Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea
详细信息   
摘要
This study begins with the premise that current reservoir management systems do not take into account the potential effects of climate change on optimal performance. This study suggests an approach in which multi-purpose reservoirs can adapt to climate change using optimal rule curves developed by an integrated water resources management system. The system has three modules: the Weather Generator model, the Hydrological Model, and the Differential Evolution Optimization Model. Two general circulation models (GCMs) are selected as examples of both dry and wet conditions to generate future climate scenarios. This study is using the Nakdong River basin in Korea as a case study, where water supply is provided from the reservoir system. Three different climate change conditions (historic, wet and dry) are investigated through the compilation of six 60 years long scenarios. The optimal rule curves for three multi-purpose reservoirs in the basin are developed for each scenario. The results indicate that although the rule curve for large-size reservoir is less sensitive to climate change, medium or small-size reservoirs are very sensitive to those changes. We further conclude that the large reservoir should be used to release more water, while small or medium-size reservoirs should store inflow to mitigate severe drought damages in the basin.