成团泛菌苯丙氨酸氨基变位酶的性质表征及用于合成β-苯丙氨酸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of Phenylalanine Aminomutase from Pantoea Agglomerans and Synthesis of β-phenylalanine
  • 作者:朱龙宝 ; 杨瑾 ; 葛飞 ; 陶玉贵 ; 宋平
  • 英文作者:ZHU Long-bao;YANG Jin;GE Fei;TAO Yu-gui;SONG Ping;School of Biochemical and Chemical Engineering, Anhui Polytechnic University;
  • 关键词:成团泛菌 ; 丙氨酸氨基变位酶 ; β-苯丙氨酸 ; 基因克隆 ; 异源表达 ; 生物工程
  • 英文关键词:Pantoea agglomerans;;phenylalanine aminomutase;;β-phenylalanine;;gene cloning;;heterogeneous expression;;biological engineering
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:安徽工程大学生物与化学工程学院;
  • 出版日期:2019-01-29 13:16
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(31671797);; 安徽省高校自然科学基金(KJ2016A801);; 安徽工程大学拔尖人才项目(2016BJRC006)~~
  • 语种:中文;
  • 页:JXHG201903014
  • 页数:7
  • CN:03
  • ISSN:21-1203/TQ
  • 分类号:94-99+105
摘要
克隆来源于Pantoea agglomerans的苯丙氨酸氨基变位酶基因(pam),构建表达载体,转入大肠杆菌中进行异源表达,采用亲和层析制备电泳纯的重组酶(PaPAM),用于催化合成β-苯丙氨酸。结果表明:成功克隆得到基因pam,长度为1626bp,编码541个氨基酸长度的PaPAM,构建了大肠杆菌表达载体pET28a-pam,转入E.coliBL21中经异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达,镍柱亲和层析纯化获得电泳纯的重组PaPAM。MS和NMR表征结果表明,重组PaPAM能异构化a-苯丙氨酸为β-苯丙氨酸,在最适条件下(30℃、pH 9、1.5 mol/L NH_4~+),酶活力达到2.5 kU/g,在30~50℃、pH 8~10下PaPAM具有较高的稳定性,金属离子Na~+、Mg~(2+)、Ca~(2+)、Fe~(3+)对PaPAM的活性影响较小,表面活性剂SDS和Triton100对PaPAM有较强抑制作用,在最佳反应条件下,底物的转化率达到92%。
        The gene of phenylalanine aminomutase(pam) was cloned from Pantoea agglomerans and the expression vector was constructed for heterologous expression in E. coli. The electrophoretically pure recombinant phenylalanine aminomutase(PaPAM) obtained by affinity chromatography was used to synthesize β-phenylalanine. The results showed that the gene pam with 1626 bp encoding 541 amino acids of PaPAM was successfully cloned. The expression vector pET28 a-pam was constructed and transferred into E. coli BL21 for induced expression using isopropy-β-D-thiogalactoside(IPTG). The product ofβ-phenylalanine was characterized by MS and NMR. The enzyme activity reached 2.5 k U/g under the optimum conditions of 30 ℃, pH 9.0 and 1.5 mol/L NH_4~+. The enzyme exhibited high stability at 30~50 ℃ and pH 8~10. Metal ions Na~+, Mg~(2+), Ca~(2+) and Fe~(3+) had little effect on the activity of PaPAM, while surfactants SDS and Triton 100 had strong inhibitory effect on PaPAM. Under the optimal reaction condition, the conversion of α-phenylalanine reached 92%.
引文
[1]Jin M,Fischbach M A,Clardy J.A biosynthetic gene cluster for the acetyl-CoA carboxylase inhibitor andrimid[J].Journal of the American Chemical Society,2006,128(33):10660-10661.
    [2]Magarvey N A,Fortin P D,Thomas P M,et al.Gatekeeping versus promiscuity in the early stages of the andrimid biosynthetic assembly line[J].ACS Chemical Biology,2008,3(9):542-554.
    [3]Kudo F,Miyanagaa A,Eguchi T.Biosynthesis of natural products containing beta-amino acids[J].Natural Product Reports,2014,31(8):1056-1073.
    [4]Ratnayake N D,Theisen C,Walter T,et al.Whole-cell biocatalytic production of variously substituted beta-aryl-and beta-heteroarylbeta-amino acids[J].Journal Biotechnology,2016,217:12-21.
    [5]Grayson J I,Roos J,Osswald S.Development of a commercial process for(S)-beta-phenylalanine[J].Organic Process Research&Development,2011,15(5):1201-1206.
    [6]Forro E,Fueloep F.Recent lipase-catalyzed hydrolytic approaches to pharmacologically important beta-and gamma-amino acids[J].Current Medicinal Chemistry,2012,19(36):6178-6187.
    [7]Grulich M,Brezovsky J,Stepanek V,et al.Resolution of alpha/beta-amino acids by enantioselective penicillin G acylase from Achromobacter sp[J].Journal of Molecular Catalysis B-Enzymatic,2015,122:240-247.
    [8]Mathew S,Jeong S S,Chung T,et al.Asymmetric synthesis of aromatic beta-amino acids using omega-transaminase:Optimizing the lipase concentration to obtain thermodynamically unstable beta-keto acids[J].Biotechnology Journal,2016,11(1):185-190.
    [9]Mathew S,Bea H,Nadarajan S P,et al.Production of chiralα-amino acids usingω-transaminase from Burkholderia graminis[J].Journal Biotechnology,2015,20(196/197):1-8.
    [10]Parmeggiani F,Weise N J,Ahmed S T,et al.Synthetic and therapeutic applications of ammonia-lyases and aminomutases[J].Chemical Reviews,2018,118(1):73-118.
    [11]Wybenga G,Szymanski W,Wu B,et al.Structural investigations into the stereochemistry and activity of a phenylalanine-2,3-aminomutase from Taxus chinensis[J].Biochemistry,2014,53(19):3187-3198.
    [12]Wu B,Szymanski W,Wybenga G G,et al.Mechanism-inspired engineering of phenylalanine aminomutase for enhanced betaregioselective asymmetric amination of cinnamates[J].Angewandte Chemie-International Edition,2012,51(2):482-486.
    [13]Chesters C,Wilding M,Goodall M,et al.Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes[J].Angewandte Chemie-International Edition,2012,51(18):4344-4348.
    [14]Zhu Longbao(朱龙宝),Tao Yugui(陶玉贵),Ge Fei(葛飞),et al.Production and characterization of phenylalanine aminomutase from Streptomyces Maritimus and synthesis of beta-arylalanine[J].Chemical Journal of Chinese Universities-Chinese(高等学校化学学报),2017,38(2):206-211.
    [15]Bradford M M.A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(9):248-254
    [16]Heberling M M,Masman M F,Bartsch S,et al.Ironing out their differences:dissecting the structural determinants of a phenylalanine aminomutase and ammonia lyase[J].ACS Chemical Biology,2015,10(4):989-997.
    [17]Wu B,Szymanski W,Wietzes P,et al.Enzymatic synthesis of enantiopure alpha-and beta-amino acids by phenylalanine aminomutase-catalysed amination of cinnamic acid derivatives[J].Chembiochem,2009,10(2):338-344.
    [18]Walker K D,Klettke K,Akiyama T,et al.Cloning,heterologous expression,and characterization of a phenylalanine aminomutase involved in Taxol biosynthesis[J].Journal Biological Chemistry,2004,279(52):53947-53954.