红树莓籽黄酮微胶囊工艺优化及其体外模拟胃肠消化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of Microencapsulation of Flavonoids from Red Raspberry Seeds and Its Simulated Gastrointestinal Digestion in Vitro
  • 作者:纪秀凤 ; 吕长鑫 ; 芦宇 ; 张海燕 ; 于泳渤 ; 赵玉梅 ; 王贵虹 ; 励建荣
  • 英文作者:JI Xiu-feng;LV Chang-xin;LU Yu;ZHANG Hai-yan;YU Yong-bo;ZHAO Yu-mei;WANG Gui-hong;LI Jian-rong;Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products,Food Safety Key Lab of Liaoning Province,National & Local Joint Engineering Research Center of Storage,College of Food Science and Technology,Bohai University;Chaoyang Bense Organic Food Co.,Ltd.;Liaoning Xindadi Industrial Development Group Co.,Ltd.;
  • 关键词:红树莓籽 ; 黄酮 ; 微胶囊 ; 复凝聚 ; 体外模拟胃肠消化
  • 英文关键词:red raspberry seeds;;flavonoids;;microencapsulation;;complex coacervation;;in vitro simulated gastrointestinal digestion
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:渤海大学食品科学与工程学院辽宁省食品安全重点实验室生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心;朝阳本色有机食品有限公司;辽宁新大地实业发展集团有限公司;
  • 出版日期:2018-09-21 09:29
  • 出版单位:食品工业科技
  • 年:2019
  • 期:v.40;No.421
  • 基金:国家重点研发计划专项(2017YFD0400704);; 辽宁省高等学校产业技术研究院重大项目(000041803)
  • 语种:中文;
  • 页:SPKJ201905030
  • 页数:6
  • CN:05
  • ISSN:11-1759/TS
  • 分类号:188-193
摘要
以红树莓籽黄酮为芯材,明胶和羧甲基纤维素钠为壁材,通过单因素及响应面试验优化复凝聚法制备红树莓籽黄酮微胶囊工艺,并对黄酮微胶囊化前后理化性质和体外胃肠消化释放量进行分析。结果表明,黄酮微胶囊最佳制备工艺:芯壁比1∶4.6(w:w)、壁材浓度1%、反应温度46℃,此条件下黄酮包埋率92.38%,水分含量5.26%、休止角31.3°、溶解度91.54%、粒径546 nm、玻璃化转变温度145.75℃,具有良好的溶解性和稳定性。模拟胃消化2.5 h,黄酮包埋前后释放量分别为77.31和21.88 mg/g;肠消化3.0 h,黄酮包埋前后释放量分别为158.48和112.51 mg/g,表明黄酮微胶囊可提高黄酮稳定性和缓释效果。
        Using red raspberry seeds flavonoids as the core material,gelatin and carboxymethyl cellulose as wall materials,the red raspberry seeds flavonoids microcapsules were prepared by optimizing the complex agglomeration method through single factor and response surface tests. The prepared microcapsules were researched on physicochemical properties and its in vitro releasing behavior. The results showed that the optimal process parameters were as follows: Core/wall material quality ratio 1∶ 4.6 (w∶ w),wall material concentration 1% and reaction temperature 46 ℃,the embedding rate could reach 92.38%. The moisture content,repose angle,solubility,particle size and glass-transition temperature of the microcapsules were 5.26%,31.3 °,91.54%,546 nm and 145.75 ℃,respectively. The encapsulated flavonoids had good solubility and stability. Simulated gastric digestion 2.5 h and intestinal digestion 3.0 h,the release amout of flavonoids before and after microcapsulation were 14.23,5.02 mg/g and 27.79,12.62 mg/g. These results conclusively suggested that encapsulated flavonoids by this process could protect the flavonoids,and improve its stability and sustained release behavior.
引文
[1]God J,Tate P L,Laram L L.Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells[J].Nutrition Research,2010,30(11):777-782.
    [2]Pavlovi A V,Papetti A,Zagorac D C D,et al.Phenolicscomposition of leaf extracts of raspberry and blackberry cultivars grown in Serbia[J].Industrial Crops and Products,2016,87:304-314.
    [3]李萌萌,焦天慧,吕长鑫,等.红树莓籽中黄酮提取工艺及抗氧化活性研究[J].中国食品学报,2017,17(2):101-108.
    [4]刘星雨,周敏,孙体健.天然黄酮类化合物的药理活性及分离提取[J].中国药物与临床,2014,14(5):621-624.
    [5]Lu H F,Zheng H,Lou H Q,et al.Using neural networks toestimate the losses of ascorbic acid,total phenols,flavonoid,and antioxidant activity in asparagus during thermal treatments[J].Journalof Agricultural and Food Chemistry,2010,58(10):2995-3001.
    [6]Luo J,Cai W,Wu T,et al.Phytochemical distribution in hull and cotyledon of adzuki bean(Vigna angularis L.)and mung bean(Vigna radiate L.),and their contribution to antioxidant,antiinflammatory and anti-diabetic activities[J].Food Chemistry,2016,201:350-360.
    [7]徐志红,李磊,武法文,等.环糊精对黄酮的包合作用及其在银杏黄酮提取中的应用[J].精细化工,2005,22(10):762-765.
    [8]廖霞,杨小兰,李瑶,等.槲皮素微胶囊的贮藏稳定性及抗氧化活性[J].食品科学,2017,38(1):60-66.
    [9]韩路路,毕良武,赵振东,等.微胶囊的制备方法研究进展[J].生物质化学工程,2011,45(3):41-46.
    [10]Jain A,Thakur D,Ghoshal G,et al.Characterization of microcapsulatedβ-carotene formed by complex coacervation using casein and gum tragacanth[J].International Journal of Biological Macromolecules,2016,87:101-113.
    [11]Piacentini E,Giorno L,Dragosavac M M,et al.Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification[J].Food Research International,2013,53(1):362-372.
    [12]Cheng L H,Karim A A,Seow C C.Characterisation of composite films made of konjac glucomannan(KGM),carboxymethyl cellulose(CMC)and lipid[J].Food Chemistry,2008,107(1):411-418.
    [13]王鲁慧,徐同成,刘丽娜,等.羧甲基纤维素钠对番茄红素复凝聚微胶囊性能的影响[J].2018,39(1):105-110.
    [14]吴秀华.苦荞黄酮微胶囊的制备及其血糖调节功效的研究[D].长春:吉林农业大学,2008.
    [15]吕怡.复合凝聚反应制备茉莉香精微/纳米胶囊及其机理研究[D].无锡:江南大学,2012.
    [16]杨芙莲,刘文彦.复凝聚法制备黄酮类化合物微胶囊研究[J].粮食与油脂,2012,7:29-31.
    [17]中华人民共和国国家标准.GB5009.3-2016食品国家安全标准食品中水分的测定[S].北京:中国标准出版社,2016.
    [18]刘安然.油茶籽油的微胶囊化及其贮藏性、体外缓释动力学研究[D].湖南:湖南农业大学,2015.
    [19]夏慧亭.复凝聚法制备橄榄油微胶囊及其性质研究[D].辽宁:东北农业大学,2016.
    [20]廖霞,杨小兰,李瑶,等.响应面试验优化复凝聚法制备槲皮素微胶囊工艺及其理化性质[J].食品科学,2016,37(22):20-27.
    [21]刘成祥,王力,苏建辉,等.牡丹籽油微胶囊的制备及特性研究[J].中国油脂,2016,41(11):12-16.
    [22]Bouayed J,Hoffmann L,Bohn T.Total phenolics,flavonoids,anthocyanins and antioxidant activity following simulated gastrointestinal digestion and dialysis of apple varieties:Bioaccessibility and potential uptake[J].Food Chemistry,2011,128(1):14-21.
    [23]从彦丽,彭梦雪,刘冬,等.柑橘在体外模拟胃肠消化过程中总多酚、总黄酮及总抗氧化活性的变化规律[J].食品科学,2016,37(17):96-103.
    [24]李俶,翟宇鑫,陈军,等.南酸枣皮中酚类化合物体外模拟消化与溶剂提取的比较研究[J].2015,36(9):12-16.
    [25]吴秋敏.黄秋葵花总黄酮的微胶囊化及其应用在冷鲜肉保鲜上的研究[D].杭州:浙江大学,2015.
    [26]陆俊,敦惠瑜,向孝哲,等.体外模拟胃、肠消化对6种黑色食品抗氧化成分及其活性的影响[J].食品科学,2018,39(5):47-56.
    [27]孙瑞瑞.紫苏β-胡萝卜素的超临界CO2萃取及其微胶囊产品的研究[D].哈尔滨:东北农业大学,2017.
    [28]张新羽.明胶/桃胶复合凝聚甜橙油微胶囊的制备工艺、控释及壁材性质研究[D].锦州:渤海大学,2012.