运用CSEOF方法分析南海表面温度季节与年际变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seasonal and Interannual Variation of the Sea Surface Temperature in the South China Sea Deduced by CSEOF Analysis
  • 作者:王冠楠 ; 钟贻森 ; 周朦 ; 刘海龙 ; 张召儒 ; 周磊
  • 英文作者:WANG Guan-Nan;ZHONG Yi-Sen;ZHOU Meng;LIU Hai-Long;Zhang Zhao-Ru;ZHOU Lei;Institute of Oceanography,Shanghai Jiao Tong University;
  • 关键词:循环平稳经验正交函数 ; 南海 ; 表面温度 ; ENSO
  • 英文关键词:cyclostationary empirical orthogonal functions;;South China Sea;;surface temperature;;ENSO
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:上海交通大学海洋研究院;
  • 出版日期:2019-04-19
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.295
  • 基金:国家自然科学基金项目(41706014;91628302);; 国家重点基础研究发展计划项目(2014CB441500)资助~~
  • 语种:中文;
  • 页:QDHY201906003
  • 页数:13
  • CN:06
  • ISSN:37-1414/P
  • 分类号:10-22
摘要
本文基于粗分辨率卫星数据和中尺度分辨率ROMS模型数据,通过一种较新的循环平稳经验正交函数(CSEOF)方法,分析南海表面温度的季节变化与年际变化,其中南海表面温度的第一模态和第二模态分别代表南海温度的季节变化信号和随ENSO变化的信号。卫星与模型的第一模态的空间分布较为一致,南海北部相对南部具有更强的季节变化,第一模态时间序列主成分与Nino3指数具有一定相关性,但相关系数小于30%。卫星与模型第二模态时间序列主成分与Nino3相关性较高,均大于50%,落后Nino3指数7个月。通过对比模型与卫星结果发现,中尺度过程的引入仅使第二模态空间分布更为复杂,而对第一模态的季节变化及与ENSO信号的相关性并没有显著影响。赤道太平洋温度异常通过大气环流无延迟的影响南海的云层覆盖和蒸发,进而影响南海表面的短波辐射和潜热通量,混合层中垂向混合和夹带过程可能是阻碍南海表面温度过快响应净热通量改变的原因。
        Using satellite data and ROMS model output,the seasonal and interannual variation of the surface temperature in the South China Sea is analyzed with the cyclostationary empirical orthogonal function(CSEOF)method.The results show that the first and second modes represent the seasonal and ENSO-related variation of the sea surface temperature respectively.The spatial pattern of the first mode shows greater amplitude of the variation in the northern South China Sea.The correlation between the principal component and Nino3 index is less than 30%for the first mode while exceeds 50%for the second mode with Nino3 index 7 months leading.By comparing the model and satellite results,we found the mesoscale processes generally have an insignificant impact on the seasonal variation and ENSO correlation of the surface temperature.The equatorial Pacific temperature anomaly affects the cloud cover and evaporation of the South China Sea through the atmospheric circulation synchronously,and then the short wave radiation and latent heat flux on the surface of the South China Sea will be affected.The vertical mixing and entrainment process in the mixed layer may be the reason that hinders net heat flux influences the surface temperature of the South China Sea so fast.
引文
[1]Fang G,Wang Y,Wei Z,et al.Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J].Dynamics of Atmospheres and Oceans,2009,47(1-3):55-72.
    [2]Klein S A,Soden B J,Lau N C.Remote sea surface temperature variations during ENSO:Evidence for a tropical atmospheric bridge[J].Journal of Climate,1999,12(12):917-932.
    [3]Qiu F,Pan A,Zhang S,et al.Sea surface temperature anomalies in the South China Sea during mature phase of ENSO[J].Chinese Journal of Oceanology and Limnology,2016,34(3):577-584.
    [4]Zhou M,Wang G.Responses of atmospheric circulation to sea surface temperature anomalies in the South China Sea[J].Ocean Science Discussions,2015,11(6):1693-1710.
    [5]Xie S,Xie Q,Wang D,et al.Summer upwelling in the South China Sea and its role in regional climate variations[J].Journal of Geophysical Research Oceans,2003,108(C8):3261,doi:10.1029/2003JC001867.
    [6]Cheng Y,Hamlington B D,Plag H P,et al.Influence of ENSO on the variation of annual sea level cycle in the South China Sea[J].Ocean Engineering,2016,126:343-352.
    [7]Rong Z,Liu Y,Zong H,et al.Interannual sea level variability in the South China Sea and its response to ENSO[J].Global&Planetary Change,2007,55(4):257-272.
    [8]刘雪,林霄沛.ENSO背景下南海海表温度异常的跷跷板模态[J].中国海洋大学学报(自然科学版),2013,43(12):83-87.Liu X,Lin X.The sea surface temperature see saw pattern in South China Sea during ENSO[J].Journal of Ocean University of China Deriodical,2013,43(12):83-87.
    [9]Huang Z,Du Y,Wu Y,et al.Asymmetric response of the South China Sea SST to El Ni1o and La Ni1a[J].Journal of Ocean University of China,2013.12(2):272-278.
    [10]Yan H,Soon W,Wang Y.A composite sea surface temperature record of the northern South China Sea for the past 2500years:Aunique look into seasonality and seasonal climate changes during warm and cold periods[J].Earth-Science Reviews,2015.141:122-135.
    [11]Soumya M,Vethamony P,Tkalich P.Inter-annual sea level variability in the southern South China Sea[J].Global&Planetary Change,2015.133:17-26.
    [12]Thompson B,Tkalich P.Mixed layer thermodynamics of the Southern South China Sea[J].Climate Dynamics,2014.43(7-8):2061-2075.
    [13]Wang C,Wang W,Wang D,et al.Interannual variability of the South China Sea associated with El Ni1o[J].Journal of Geophysical Research Oceans,2006,111:C03023,doi:10.1029/2005JC003333.
    [14]Fang G,Chen H,Wei Z,et al.Trends and interannual variability of the South China Sea surface winds,surface height,and surface temperature in the recent decade[J].Journal of Geophysical Research Oceans,2006.111.10.1029/2005JC003276.
    [15]Wang Z,Zhai F,Li P.A shift in the upper-ocean temperature trends in the South China Sea since the late 1990s[J].Acta Oceanologica Sinica,2016,35(11):44-51,doi:10.1007/s13131-016-0947-1.
    [16]Kim KY,Hamlington B D,Na H.Theoretical foundation of cyclostationary EOF analysis for geophysical and climatic variables:Concepts and examples[J].Earth-Science Reviews,2015,150:201-218.
    [17]吴晓芬,许建平,张启龙等.热带西太平洋海域上层海洋热含量的CSEOF分析[J].热带海洋学报,2011,30(6):37-46.Wu X,Xu J,Zhang Q,et al.CSEOF analysis of the upper ocean heat content in the tropical western Pacific[J].Journal of tropical ocean,2011,30(6):37-46.
    [18]Kim KY,Hamlington B D,Na H,et al.Mechanism of seasonal Arctic sea ice evolution and Arctic amplification[J].Cryosphere Discussions,2016,10(5):1-29.
    [19]Sun M,Kim G.Quantitative monthly precipitation forecasting using cyclostationary empirical orthogonal function and canonical correlation analysis[J].Journal of Hydrologic Engineering,2016,21(1):04015045.
    [20]Kim K Y,Kim Y.A comparison of sea level projections based on the observed and reconstructed sea level data around the Korean Peninsula[J].Climatic Change,2017,142(1-2):23-36.
    [21]Banzon V,Smith T M,Chin T M,et al.A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring,modeling and environmental studies[J].Earth System Science Data,2016,8(1):165-176.
    [22]Egbert G D,Erofeeva S Y.Efficient inverse modeling of barotropic ocean tides[J].Journal of Atmospheric&Oceanic Technology,2002,19(2):183-204.
    [23]Kim K Y,North G R,Huang J.EOFS of one-dimensional cyclostationary time series:Computations,examples,and stochastic modeling[J].Journal of the Atmospheric Sciences,2010,53(7):1007-1017.
    [24]Hamlington B D,Leben R R,Nerem R S,et al.Reconstructing sea level using cyclostationary empirical orthogonal functions[J].Journal of Geophysical Research Oceans,2011,116,C12015,doi:10.1029/2011JC007529.
    [25]Sun M,Kim G.Quantitative monthly precipitation forecasting using cyclostationary empirical orthogonal function and canonical correlation analysis[J].Journal of Hydrologic Engineering,2016,21(1):04015045.
    [26]Hamlington B D,Leben R R,Strassburg M W,et al.Cyclostationary empirical orthogonal function sea-level reconstruction[J].Geoscience Data Journal,2015,1(1):13-19.
    [27]Liu Q,Jiang X,Xie S P,et al.A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter:Seasonal development and interannual variability[J].Journal of Geophysical Research Oceans,2004,109.10.1029/2003JC002179.
    [28]Qiu C,Mao H,Yu J,et al.Sea surface cooling in the Northern South China Sea observed using Chinese sea-wing underwater glider measurements[J].Deep Sea Research Part I Oceanographic Research Papers,2015,105:111-118