外源多酚氧化酶催化合成儿茶素二聚体氧化产物的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in Synthesis of Oxidized Dimeric Catechin Catalyzed by Exogenous Polyphenol Oxidase
  • 作者:付静 ; 江和源 ; 张建勇 ; 施莉婷 ; 王伟伟
  • 英文作者:FU Jing;JIANG Heyuan;ZHANG Jianyong;SHI Liting;WANG Weiwei;Shaanxi Key Laboratory of Bio-resource, Shaanxi University of Technology;Tea Research Institute, Chinese Academy of Agricultural Sciences;
  • 关键词:儿茶素 ; 外源多酚氧化酶 ; 二聚体氧化产物 ; 茶黄素类 ; 聚酯型儿茶素
  • 英文关键词:catechin;;exogenous polyphenol oxidase;;oxidized dimeric products;;thea?avins;;theasinensins
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:陕西理工大学陕西省资源生物重点实验室;中国农业科学院茶叶研究所;
  • 出版日期:2018-06-26 09:23
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.596
  • 基金:国家自然科学基金面上项目(31670692);; 陕西省教育厅重点实验室项目(18JS016);; 陕西省重点研发计划项目(2018NY-126);; 农业部2017年“西部之光”项目
  • 语种:中文;
  • 页:SPKX201907040
  • 页数:7
  • CN:07
  • ISSN:11-2206/TS
  • 分类号:282-288
摘要
在红茶加工过程中,儿茶素通过多种氧化途径形成种类和构成都很复杂的氧化聚合产物,也赋予了红茶特有的色泽和口感。目前研究较多的儿茶素二聚体氧化产物主要是茶黄素类和聚酯型儿茶素。本文综述了近年来国内外在儿茶素二聚体氧化产物形成的反应途径、儿茶素酶性氧化中的外源多酚氧化酶及其与底物的特异性、儿茶素酶性氧化生成二聚体氧化产物及其生物活性、外源多酚氧化酶催化儿茶素氧化生成二聚体氧化产物在茶类加工中应用等方面的研究现状,旨在为进一步深入理解儿茶素酶性氧化机理提供参考,同时也为茶叶深加工提供应用科学理论依据。
        During black tea processing, catechin is converted into a wide variety of oxidized polymers with complicated structures through many pathways, and the unique color and taste of black tea is due to these compounds. Currently, most studies on oxidized dimeric catechin have focused on thea?avins(TFs) and theasinensins(TSs). This review summarizes recent advances in understanding the reaction pathways for the formation of oxidized dimeric catechin, the exogenous polyphenol oxidases responsible for enzymatic oxidation of catechin and their substrate specificity, and the bioactivity of oxidized dimeric catechin and recent advances in applying oxidized dimeric catechin in tea processing. The aim of the present review is to provide a better understanding of the enzymatic oxidation mechanism of catechin and to provide a scienti?c basis for tea deep processing.
引文
[1]LI S M,LO C Y,PAN M H,et al.Black tea:chemical analysis and stability[J].Food and Function,2013,4(1):10-18.DOI:10.1039/c2fo30093a.
    [2]HILTON P J,ELLIS R T.Estimation of the market value of central African tea by theaflavin analysis[J].Journal of the Science of Food and Agriculture,1972,23(2):227-232.DOI:10.1002/jsfa.2740230210.
    [3]TANAKA T,MATSUO Y,KOUNO I.Chemistry of secondary polyphenols produced during processing of tea and selected foods[J].International Journal of Molecular Sciences,2010,11(1):14-40.DOI:10.3390/ijms11010014.
    [4]TAKINO Y,IMAGAWA H,HORIKAWA H,et al.Studies on the mechanism of the oxidation of tea leaf catechins:part III.formation of a reddish orange pigment and its spectral relationship to some benzotropolone derivatives[J].Agricultural and Biological Chemistry,1964,28(1):64-71.
    [5]TAKINO Y,FERRETTI A,FLANAGAN V,et al.The structure of theaflavin,a polyphenol of black tea[J].Tetrahedron Letters,1965,6(45):4019-4025.DOI:10.1016/S0040-4039(01)99608-X.
    [6]NONAKA G,KAWAHARA O,NISHIOKA I.Tannins and related compounds.XV.a new class of dimeric flavan-3-olgallates,theasinensins A and B,and proanthocyanidin gallates from green tea leaf[J].Chemical and Pharmaceutical Bulletin,1983,31(11):3906-3914.
    [7]HASHIMOTO F,NONAKA G,NISHIOKA I.Tannins and related compounds.CXIV.structures of novel fermentation products,theogallinin,theaflavonin and desgalloyl theaflavonin from black tea,and changes of tea leaf polyphenols during fermentation[J].Chemical and Pharmaceutical Bulletin,1992,40(6):1383-1389.
    [8]TANAKA T,MINE C,WATARUMI S,et al.Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins[J].Journal of Natural Products,2002,65(11):1582-1587.DOI:10.1021/np020245k.
    [9]TANAKA T,MATSUO Y,KOUNO I.A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate[J].Journal of Agricultural and Food Chemistry,2005,53(19):7571-7578.DOI:10.1021/jf0512656.
    [10]TANAKA T,WATARUMI S,MATSUO Y,et al.Production of theasinensins A and D,epigallocatechin gallate dimers of black tea,by oxidation-reduction dismutation of dehydrotheasinensin A[J].Tetrahedron,2003,59(40):7939-7947.DOI:10.1016/j.tet.2003.08.025.
    [11]SHII T,MIYAMOTO M,MATSUO Y,et al.Biomimetic onepot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper(II)chloride and ascorbic acid[J].Chemical and Pharmaceutical Bulletin,2011,59(9):1183-1185.
    [12]WEERAWATANAKORN M,HUNG W L,PAN M H,et al.Chemistry and health beneficial effects of oolong tea and theasinensins[J].Food Science and Human Wellness,2015,4:133-146.DOI:10.1016/j.fshw.2015.10.002.
    [13]LERCH K.Neurospora,tyrosinase:structural,spectroscopic and catalytic properties[J].Molecular and Cellular Biochemistry,1983,52(2):125-138.DOI:10.1007/BF00224921.
    [14]黄建安,黄意欢,罗军武,等.茶树多酚氧化酶基因的SNP分析[J].湖南农业大学学报(自然科学版),2007,33(4):454-458;485.
    [15]赵东,刘祖生,奚彪.茶树多酚氧化酶基因的克隆及其序列比较[J].茶叶科学,2001,21(2):94-98.
    [16]周仲华,张达,倪贺,等.生物信息学筛选催化茶黄素合成的多酚氧化酶[J].华南师范大学学报(自然科学版),2017,49(3):59-67.
    [17]VERLOOP A J W,GRUPPEN H,BISSCHOP R,et al.Altering the phenolicsprofile of a green tea leaves extract using exogenous oxidases[J].Food Chemistry,2016,196:1197-1206.DOI:10.1016/j.foodchem.2015.10.068.
    [18]TANAKA T,MINE C,INOUE K,et al.Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the synthesis and degradation of theaflavin[J].Journal of Agricultural and Food Chemistry,2002,50(7):2142-2148.DOI:10.1021/jf011301a.
    [19]王丽璞.茶黄素制备与纯化条件的初步研究[D].南京:南京农业大学,2011:23-29.
    [20]叶飞,高士伟,龚自明.砂梨多酚氧化酶处理对夏秋红茶品质的影响[J].食品科学,2013,34(23):92-95.
    [21]罗玲,王洪新,胡倩倩,等.几种复合天然多酚氧化酶氧化茶多酚的比较研究[J].食品与生物技术学报,2015,34(4):385-389.
    [22]TANAKA T,KONDOU K,KOUNO I.Oxidation and epimerization of epigallocatechin in banana fruits[J].Phytochemistry,2000,53(2):311-316.DOI:10.1016/S0031-9422(99)00533-6.
    [23]LI Y,SHIBAHARA A,MATSUO Y,et al.Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins[J].Journal of Natural Products,2010,73(1):33-39.DOI:10.1021/np900618v.
    [24]MATSUO Y,YAMADA Y,TANAKA T,et al.Enzymatic oxidation of gallocatechin and epigallocatechin:effects of C-ring configuration on the reaction products[J].Phytochemistry,2008,69(18):3054-3061.DOI:10.1016/j.phytochem.2007.08.007.
    [25]MATSUO Y,HAYASHI T,SAITO Y,et al.Structures of enzymatic oxidation products of epigallocatechin[J].Tetrahedron,2013,69(42):8952-8958.DOI:10.1016/j.tet.2013.07.045.
    [26]MATSUO Y,TADAKUMA F,SHII T,et al.Selective oxidation of pyrogallol-type catechins with unripe fruit homogenate of Citrus unshiu and structural revision of oolongtheanins[J].Tetrahedron,2015,71(17):2540-2548.DOI:10.1016/j.tet.2015.03.016.
    [27]VAN DER WESTHUIZEN M,STEENKAMP L,STEENKAMP P,et al.Alternative pathway implicated as an influencing factor in the synthesis of theaflavin[J].Biocatalysis and Biocatalysis,2016,33(5/6):298-309.DOI:10.3109/10242422.2016.1163341.
    [28]SELINHEIMO E,NIEIDHIN D,STEFFENSEN C,et al.Comparison of the characteristics of fungal and plant tyrosinases[J].Journal of Biotechnology,2007,130(4):471-480.DOI:10.1016/j.jbiotech.2007.05.018.
    [29]张婉蓉,巫婷玉,杨民和.产多酚氧化酶茶树内生真菌的筛选及产酶条件优化[J].茶叶科学,2015,35(3):271-280.
    [30]LEE Y,LIN Z,DU G C,et al.The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products[J].Journal of the Science of Food and Agriculture,2015,95(13):2686-2692.DOI:10.1002/jsfa.7003.
    [31]NARAI-KANAYAMA A,KAWASHIMA A,UCHIDA Y,et al.Specificity of tyrosinase-catalyzed synthesis of theaflavins[J].Journal of Molecular Catalysis B Enzymatic,2016,133:5452-5458.DOI:10.1016/j.molcatb.2017.03.009.
    [32]YABUKI C,YAGI K,NANJO F.Highly efficient synthesis of theaflavins by tyrosinase from mushroom and its application to theaflavin related compounds[J].Process Biochemistry,2017,55:61-69.DOI:10.1016/j.procbio.2017.02.002.
    [33]TAO Y M,YAO L Y,QIN Q Y,et al.Purification and characterization of polyphenol oxidase from jackfruit(Artocarpus heterophyllus)bulbs[J].Journal of Agricultural and Food Chemistry,2013,61(51):12662-12669.DOI:10.1021/jf403828e.
    [34]MARRUFO-HEMáNDEZ N A,PALMA-OROZCO G,BELTRáNH I,et al.Purification,partial biochemical characterization and inactivation of polyphenol oxidase from Mexican Golden Delicious apple(Malus domestica)[J].Journal of Food Biochemistry,2017,41(3):e12356.DOI:10.1111/jfbc.12356.
    [35]安燕,张玉星,顾雪梅,等.固定化多酚氧化酶及其酶促氧化酚类物质研究[J].环境科学与技术,2013,36(9):21-25.
    [36]FANG W P,WANG L P,YU J,et al.Studies on optimum conditions of synthesizing theaflavins by using bio-enzyme method[J].Applied Mechanics and Materials,2012,138/139:929-932.DOI:10.4028/www.scientific.net/AMM.138-139.929.
    [37]蒋长兴,焦云鹏,熊清平,等.山药氧化酶特性及茶黄素的合成[J].江苏农业科学,2013,41(8):277-280.
    [38]张元,钱文俊,韩永涛,等.HPLC分析Cu2+对茶酶源酶促氧化合成茶黄素的影响[J].西北农业学报,2015,24(10):118-123.
    [39]LEI S C,XIE M H,HU B,et al.Effective synthesis of theaflavin-3,3’-digallate with epigallocatechin-3-O-gallate and epicatechin gallate as substrates by using immobilized pear polyphenol oxidase[J].International Journal of Biological Macromolecules,2017,94(Pt A):709-718.DOI:10.1016/j.ijbiomac.2016.10.072.
    [40]KUHNERT N.Chemistry and biology of the black tea thearubigins and of tea fermentation[M]//PREEDY V R.Tea in health and disease prevention.San Diego:Elsevier Academic Press,2013:343-360.DOI:10.1016/B978-0-12-384937-3.00029-X.
    [41]YASSIN G H,KOEK J H,JAYARAMAN S,et al.Identification of novel homologous series of polyhydroxylated theasinensins and theanaphthoquinones in the SII fraction of black tea thearubigins using ESI/HPLC tandem mass spectrometry[J].Journal of Agricultural and Food Chemistry,2014,62(40):9848-9859.DOI:10.1021/jf502220.
    [42]徐斌,江和源,张建勇,等.不同pH条件下TSs的形成机理及其与TFs的竞争性形成研究[J].茶叶科学,2015,35(3):281-289.
    [43]ITOH N,KUROKAWA J,ISOGAI Y,et al.Functional characterization of epitheaflagallin 3-O-gallate generated in laccasetreated green tea extracts in the presence of gallic acid[J].Journal of Agricultural and Food Chemistry,2017,65(48):10473-10481.DOI:10.1021/acs.jafc.7b04208.
    [44]MIYATA Y,TAMARU S,TANAKA T,et al.The flavins and the asinensin a derived from fermented tea have antihyperglycemic and hypotriacylglycerolemic effects in KK-A(y)mice and Sprague-Dawley rats[J].Journal of Agricultural and Food Chemistry,2013,61(39):9366-9372.DOI:10.1021/jf400123y.
    [45]SHII T,TANAKA T,WATARUMI S,et al.Polyphenol composition of a functional fermented tea obtained by tea-rolling processing of green tea and loquat leaves[J].Journal of Agricultural and Food Chemistry,2011,59(13):7253-7260.DOI:10.1021/jf201499n.
    [46]GUO X M,LONG P P,MENG Q L,et al.An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects onα-glucosidase andα-amylase[J].Food Chemistry,2018,246:74-81.DOI:10.1016/j.foodchem.2017.10.148.
    [47]ZHANG C,SUEN C L,YANG C,et al.Antioxidant capacity and major polyphenol composition of teas as affected by geographical location,plantation elevation and leaf grade[J].Food Chemistry,2018,244:109-119.DOI:10.1016/j.foodchem.2017.09.126.
    [48]BUTT M S,IMRAN A,SHARIF M K,et al.Black tea polyphenols:a mechanistic treatise[J].Critical Reviews in Food Science and Nutrition,2014,54(8):1002-1011.DOI:10.1080/10408398.2011.623198.
    [49]KIMUTAI S,WANYOKO J,KINYANJUI T,et al.Determination of residual catechins,polyphenolic contents and antioxidant activities of developed theaflavin-3,3’-digallate rich black teas[J].Food and Nutrition Sciences,2016,7(3):180-191.DOI:10.4236/fns.2016.73020.
    [50]KO H J,LO C Y,WANG B J,et al.Theaflavin-3,3’-digallate,a black tea polyphenol,attenuates adipocyte-activated inflammatory response of macrophage associated with the switch of M1/M2-like phenotype[J].Journal of Functional Foods,2014,11:36-48.DOI:10.1016/j.jff.2014.09.003.
    [51]DING Y P,CHEN B C,GAO Z L,et al.Pre-treated theaflavin-3,3’-digallate has a higher inhibitory effect on the HCT116 cell line[J].Food&Nutrition Research,2017,61(1):1400340.DOI:10.1080/16546628.2017.1400340.
    [52]UCHIYAMA S,TANIGUCHI Y,SAKA A,et al.Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo[J].Nutrition,2011,27(3):287-292.DOI:10.1016/j.nut.2010.01.019.
    [53]TAKEMOTO M,TAKEMOTO H,SAIJO R.Theaflavin synthesized in a selective,domino-type,one-pot enzymatic biotransformation method with camellia sinensis cell culture inhibits weight gain and fat accumulation to high-fat diet-induced obese mice[J].Biological and Pharmaceutical Bulletin,2016,39(8):1347-1352.DOI:10.1248/bpb.b16-00284.
    [54]GAO Y,RANKIN G O,TU YY,et al.Theaflavin-3,3’-digallate decreases human ovarian carcinoma OVCAR-3 cell-induced angiogenesis via Akt and Notch-1 pathways,not via MAPKpathways[J].International Journal of Oncology,2016,48(1):281-292.DOI:10.3892/ijo.2015.3257.
    [55]ZU M,YANG F,ZHOU W,et al.In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives[J].Antiviral Research,2012,94(3):217-224.DOI:10.1016/j.antiviral.2012.04.001.
    [56]PAN M H,LIANG Y C,LIN-SHIAU S Y,et al.Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937cells[J].Journal of Agricultural and Food Chemistry,2000,48(12):6337-6346.DOI:10.1021/jf000777b.
    [57]CAO R,KOBAYASHI Y,NONAKA A,et al.NMR spectroscopic and quantum mechanical analyses of enhanced solubilization of hesperidin by theasinensin A[J].Pharmaceutical Research,2015,32(7):2301-2309.DOI:10.1007/s11095-015-1621-6.
    [58]HUNG W L,YANG G,WANG Y C,et al.Protective effects of theasinensin A against carbon tetrachloride-induced liver injury in mice[J].Food and Function,2017,8(9):3276-3287.DOI:10.1039/C7FO00700K.
    [59]HOU D X,MASUZAKI S,TANIGAWA S,et al.Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide(LPS)-activated mouse macrophages:structureactivity relationship and molecular mechanisms[J].Journal of Agricultural and Food Chemistry,2010,58(24):12735-12743.DOI:10.1021/jf103605j.
    [60]ISAACS C E,XU W M,MERZ G,et al.Digallate dimers of(-)-epigallocatechin gallate inactivate herpes simplex virus[J].Antimicrobial Agents and Chemotherapy,2011,55:5646-5653.DOI:10.1128/AAC.05531-11.
    [61]SANG S,LAMBERT J D,TIAN S,et al.Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities[J].Bioorganic and Medicinal Chemistry,2004,12(2):459-467.DOI:10.1016/j.bmc.2003.10.024.
    [62]SHARMA K,BARI S S,SINGH H P.Biotransformation of tea catechins into theaflavins with immobilized polyphenol oxidase[J].Journal of Molecular Catalysis B:Enzymatic,2009,56(4):253-258.DOI:10.1016/j.molcatb.2008.05.016.
    [63]HENNING S M,FAJARDO-LIRA C,LEE H W,et al.Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity[J].Nutrion and Cancer,2003,45(2):226-235.DOI:10.1207/S15327914NC4502-13.
    [64]薛金金,江和源,张建勇,等.响应面法优化聚酯型儿茶素浸提条件[J].中国食品学报,2015,15(10):105-113.
    [65]徐斌,江和源,张建勇,等.溶液中TSA及其前体物质DTSA的生成和稳定特性研究[J].中国食品学报,2016,16(5):53-60.
    [66]TANAKA T,MIYATA Y,TAMAYA K,et al.Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat(Eriobotrya japonica)and green tea leaves[J].Journal of Agricultural and Food Chemistry,2009,57(13):5816-5822.DOI:10.1021/jf900963p.
    [67]付赢萱,刘通讯.多酚氧化酶对普洱茶渥堆发酵过程中品质变化的影响[J].现代食品科技,2015,31(3):197-201.
    [68]NAKAYAMA H,YUITO N,MIYATA Y,et al.Hypolipidemic property of a new fermented tea made with third crop green tea(Camellia sinensis)leaves and unripe satsuma mandarin(Citrus unshiu)fruits[J].Food Science&Technology Research,2015,21(1):77-86.DOI:10.3136/fstr.21.77.
    [69]LI Qingrong,LUO Jialing,ZHOU Zhonghua,et al.Simplified recovery of enzymes and nutrients in sweet potato wastewater and preparing health black tea and theaflavins with scrap tea[J].Food Chemistry,2018,245:854-862.DOI:10.1016/j.foodchem.2017.11.095.