等离子体诱变菌浸出及石煤的空白焙烧相结合提高石煤中钒浸出效果(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus
  • 作者:董颖博 ; 刘悦 ; 林海 ; 刘陈静
  • 英文作者:Ying-bo DONG;Yue LIU;Hai LIN;Chen-jing LIU;School of Energy and Environmental Engineering,University of Science and Technology Beijing;Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants;
  • 关键词:常温常压等离子体(ARTP) ; 胶质芽孢杆菌 ; 含钒石煤 ; 空白焙烧 ; 生物浸出
  • 英文关键词:atmospheric and room temperature plasma (ARTP);;Bacillus mucilaginosus;;vanadium-bearing stone coal;;blank roasting;;bioleaching
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:北京科技大学能源与环境工程学院;工业典型污染物资源化处理北京市重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2015ZX07205003)supported by Major Science and Technology Program for Water Pollution Control and Treatment of China
  • 语种:英文;
  • 页:ZYSY201904019
  • 页数:10
  • CN:04
  • ISSN:43-1239/TG
  • 分类号:188-197
摘要
为了提高石煤中钒的浸出效率,采用空白焙烧及微生物浸出相结合的方法,以胶质芽孢杆菌为原始菌,采用等离子体技术对其进行诱变处理。结果表明,培养2天后,照射时间为50s时所得诱变菌B.mucilaginosus BM-50代谢产生的总有机酸含量较原始菌株提高近1倍。含钒石煤浸出20天时,诱变菌B. mucilaginosus BM-50的钒浸出率达到18.2%,相比原始菌的钒浸出率(15.3%)有所提高。空白焙烧预处理可以进一步提高钒浸出效率,浸出20天时,诱变菌B. mucilaginosus BM-50的钒浸出率为68.3%,较未预处理的诱变菌浸出体系的钒浸出率大大提高。研究表明,采用等离子体诱变菌浸出与空白焙烧相结合的方法具有提高低品位石煤钒回收率的巨大潜力。
        In order to improve leaching efficiency of vanadium from stone coal, the combination of blank roasting and bioleaching using Bacillus mucilaginosus(B. mucilaginosus) mutants was evaluated. The atmospheric and room temperature plasma(ARTP)technique was used to generate B. mucilaginosus mutants. The results showed that a mutant B. mucilaginosus BM-50, after ARTP irradiation for 50 s, had the highest acid production. The total content of the organic acid produced by B. mucilaginosus BM-50 was nearly doubled compared with the wild strain after 2 days. After 20 days, vanadium leaching rate with B. mucilaginosus BM-50 reached 18.2%, which was improved compared with the original bacteria(15.3%). A pretreatment via blank roasting for stone coal further improved the vanadium dissolution by bioleaching, namely, 68.3% vanadium was extracted, which was much higher than that without blank roasting. It is shown that bioleaching by bacterial mutants by ARTP irradiation combined with blank roasting has great potential for improving vanadium recovery from low-grade vanadium bearing stone coal.
引文
[1]ZHAO Yun-liang,WANG Wei,ZHANG Yi-min,SONG Shao-xian,BAO Shen-xu.In-situ investigation on mineral phase transition during roasting of vanadium-bearing stone coal[J].Advanced Powder Technology,2017,28:1103-1107.
    [2]ZHAO Yun-liang,ZHANG Yi-min,BAO Shen-xu,LIU Tao,BIANYing,JIANG Mou-feng,LIU Xiang.Loose-stratification model in separation process for vanadium pre-concentration from Stone coal[J].Transactions of Nonferrous Metals Society of China,2014,24:528-535.
    [3]LI Min-ting,WEI Chang,FAN Gang,LI Cun-xiong,DENG Zhi-gan,LI Xin-bin.Pressure acid leaching of black shale for extraction of vanadium[J].Transactions of Nonferrous Metals Society of China,2010,20(S):s112-s117.
    [4]LIU Chun,ZHANG Yi-min,BAO Shen-xu.Vanadium recovery from stone coal through roasting and flotation[J].Transactions of Nonferrous Metals Society of China,2017,27:197-203.
    [5]YANG Hong-ying,LIU Qian,CHEN Guo-bao,TONG Lin-lin,ALIA.Bio-dissolution of pyrite by Phanerochaete chrysosporium[J].Transactions of Nonferrous Metals Society of China,2018,28:766-774.
    [6]BEHERA S K,PANDA P P,SINGH S,PRADHAN N,SUKLA L B,MISHRA B K.Study on reaction mechanism of bioleaching of nickel and cobalt from lateritic chromite overburdens[J].International Biodeterioration&Biodegradation,2011,65:1035-1042.
    [7]ABDOLLAHI H,NOAPARAST M,SHAFAEI S Z,MANANFI Z,MUNOZ J A,TUOVINEN O H.Silver-catalyzed bioleaching of copper,molybdenum and rhenium from a chalcopyrite-molybdenite concentrate[J].International Biodeterioration&Biodegradation,2015,104:194-200.
    [8]DENG R.Characteristics and mechanisms of vanadium leaching using single and mixed Acidithiobacillus Ferrooxidans[D].Xiangtan:Xiangtan University,2015.(in Chinese)
    [9]WANG Fei,ZHANG Yi-min,LIU Tao,HUANG Jing,ZHAO Jie,ZHANG Guo-bin,LIU Juan.Comparison of direct acid leaching process and blank roasting acid leaching process in extracting vanadium from stone coal[J].International Journal of Mineral Processing,2014,128:40-47.(in Chinese)
    [10]DOPSON M,LOVGREN L,BOSTROM D.Silicate mineral dissolution in the presence of acidophilic microorganisms:Implications for heap bioleaching[J].Hydrometallurgy,2009,96:288-293.
    [11]YANG Xiao-xue,LI Yan,LU An-huai,WANG Hao-ran,ZHU Yun,DIING Hong-rui,WANG Xin.Effect of Bacillus mucilaginosus D4B1 on the structure and soil-conservation-related properties of montmorillonite[J].Applied Clay Science,2016,119:141-145.
    [12]STYRIAKOVA I,MOCKOVCIAKOVA A,STYRIAK I,KRAUS I,UHLIK P,MADEJOVA J,OROLINOVA Z.Bioleaching of clays and iron oxide coatings from quartz sands[J].Applied Clay Science,2012,61:1-7.
    [13]ZHAO Jiang-man,WU Wei-jin,ZHANG Xu,ZHU Ming-long,TANWen-song.Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals[J].International Journal of Mineral Processing,2017,168:40-47.
    [14]FANG Ming-yue,JIN Li-hua,ZHANG Chong,TAN Yin-ye,JIANGPei-xia,GE Nan,LI He-ping,XING Xin-hui.Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas(ARTP)and generation of a mutant library with diverse phenotypes[J].Plos One,2013,8:e77046.
    [15]LI Xiang-yu,LIU Rui-jie,LI Jing,CHANG Ming,LIU Yuan-fa,JINQing-zhe,WANG Xing-guo.Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma(ARTP)and diethyl sulfate treatments[J].Bioresource Technology,2015,177:134-140.
    [16]LAN Zhuo-yue,HU Yue-hua,QIN Wen-qing.Effect of surfactant OPD on the bioleaching of marmatite[J].Minerals Engineering,2009,22:10-13.
    [17]LIU Wei,YANG Hong-ying,SONG Yan,TOMG Lin-lin.Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore[J].Hydrometallurgy,2015,152:69-75.
    [18]ZHAO Yun-liang,ZHANG Yi-min,SONG Shao-xian,CHENTie-jun,BAO Shen-xu.Behaviors of impurity elements Ca and Fe in vanadium-bearing stone coal during roasting and its control measure[J].International Journal of Mineral Processing,2016,148:100-104.
    [19]LU Yuan,WANG,Li-yan,MA Kun,LI Guo,ZHANG Chong,ZHAO Hong-xin,LAI Qi-heng,LI He-ping,XING Xin-hui.Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma(ARTP)[J].Biochemical Engineering Journal,2011,55:17-22.
    [20]CAO Song,ZHOU Xu,JIN Wen-biao,WANG Feng,TU Ren-jie,HAN Song-fang,CHEN Hong-yi,CHEN Chuan,XIE Guo-Jun,MAFang.Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma(ARTP)[J].Bioresource Technology,2017,244:1400-1406.
    [21]LEE Y,KIM K,KANG K T,LEE J S,YANG S S,CHUNG W H.Atmospheric-pressure plasma jet induces DNA double-strand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae[J].Archives of Biochemistry and Biophysics,2014,560:1-9.
    [22]ZHU Yun,LI Yan,LU An-huai,WANG Hao-ran,YANG Xiao-xue,WANG Chang-qiu,CAO Wei-zheng,WANG Qing-hua,ZHANGXiao-lei,PAN Dan-mei,PAN Xiao-hong.Study of the interaction between bentonite and a strain of bacillus[J].Clays and Clay Minerals,2011,59:538-545.
    [23]ZHAO Jiang-man,WU Wei-jin,ZHANG Xu,ZHU Ming-long,TANWen-song.Characteristics of bio-desilication and bio-flotation of Paenibacillus mucilaginosus BM-4 on aluminosilicate minerals[J].International Journal of Mineral Processing,2017,168:40-47.
    [24]XIAO Guo-guang,SUN De-si,CAO Fei.Weathering of silicate minerals by metabolites produced by silicate bacteria in culture experiments[J].Journal of Mineralogy and Petrology,2013,33:8-15.(in Chinese)
    [25]ZHANG Xian-zhen,LIN Hai,SUN De-si,ZHANG Min.Structural effects of sillicate minerals on the growth,metabolism and desilicification of a strain of silicate bacterium[J].Journal of Chongqing University,2014,37:98-103.(in Chinese)
    [26]WENG Shi-fu.Fourier transform infrared spectroscopy[M].2nd ed.Beijing:Chemical Industry Press,2010.(in Chinese)
    [27]ZHU Yun,CAO Wei-zheng,LU An-huai,WANG Qing-hua,LI Yan,ZHANG Xiao-lei,WANG Chang-qiu.A study of the interaction between montmorillonite and a strain of Bacillus mucilaginosus[J].Acta Petrologica et Mineralogica,2011,30:121-126.
    [28]LIU Juan,ZHANG Yi-min,HUANG Jing,LIU Tao,YUANYi-zhong,HUANG Xian-bao.Influence of mechanical activation on mineral properties and process of acid leaching from stone coal[J].Chinese Journal of Rare Metals,2014,38:115-122.(in Chinese)
    [29]LIU Wei,YANG Hong-ying,SONG Yan,TONG Lin-lin.Catalytic effects of activated carbon and surfactants on bioleaching of cobalt ore[J].Hydrometallurgy,2015,152:69-75.
    [30]PENG An-an,LIU Hong-chang,NIE Zhen-yuan,XIA Jin-lan.Effect of surfactant Tween-80 on sulfur oxidation and expression of sulfur metabolism relevant genes of Acidithiobacillus ferrooxidans[J].Transactions of Nonferrous Metals Society of China,2012,22:3147-3155.
    [31]ZHAO Yun-liang,WANG Wei,ZHANG Yi-min,SONG Shao-xian,BAO Shen-xu.In-situ investigation on mineral phase transition during roasting of vanadium-bearing stone coal[J].Advanced Powder Technology,2017,28:1103-1107.
    [32]JIANG Mo-feng.Study on mechanism of extracting vanadium by blank roasting and acid leaching from mica-type stone coal[D].Wuhan:University of Technology Wuhan,2015.
    [33]LI Long-tao,ZHU Pei-wang,ZHENG lun-shi,JIANG Xiao,ZENGWei-qiang.Additive-free roasting technique for extracting vanadium from residue of mica-type vanadium-bearing stone coal[J].Chinese Journal of Rare Metals,2014,38:480-486.