激光扫描速率与熔覆层组织性能的规律研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on effect of laser scanning speed on microstructure and properties of cladding layer
  • 作者:何昱 ; 刘益剑 ; 陈明 ; 黄无云 ; 戴鑫 ; 毛建良 ; 徐泽玮
  • 英文作者:HE Yuyu;LIU Yijian;CHEN Ming;HUANG Wuyun;DAI Xin;MAO Jianliang;XU Zewei;NanRui Institute of Electrical Engineering and Automation, Nanjing Normal University;Changshu Jianhua Mould Polytron Technologies Inc;
  • 关键词:激光技术 ; 镍基合金 ; 扫描速率 ; 显微组织
  • 英文关键词:laser technique;;Ni-based alloy;;laser scanning speed;;microstructure
  • 中文刊名:JGJS
  • 英文刊名:Laser Technology
  • 机构:南京师范大学南瑞电气与自动化学院;常熟建华模具科技股份有限公司;
  • 出版日期:2018-06-19 16:23
  • 出版单位:激光技术
  • 年:2019
  • 期:v.43;No.240
  • 基金:江苏省高校自然科学基金资助项目(17KJB510031);; 江苏省六大人才高峰计划资助项目(TD-GDZB-009);; 国家重点研发计划资助项目(2017YFB1103200);; 江苏省科技成果转化专项资金资助项目(BA201606)
  • 语种:中文;
  • 页:JGJS201902010
  • 页数:4
  • CN:02
  • ISSN:51-1125/TN
  • 分类号:59-62
摘要
为了研究在激光熔覆修复工艺中,激光扫描速率对最终形成的熔覆层性能的影响,采用同步送粉法,利用激光熔覆工艺在QT500球墨铸铁上制备了不同扫描速率下的镍基合金熔覆层样本;利用金相显微镜观察熔覆层的显微金相,并使用显微硬度计对熔覆层显微硬度进行了测定与分析,取得了熔覆层样品的硬度、显微金相组织以及样品稀释率等数据。结果表明,在其它条件不变下,随着激光扫描速率的增加,熔覆层组织更加致密、均匀,熔覆层的平均显微硬度得到了显著提高;以激光功率为1.9kW、扫描速率为5mm/s、光斑直径为4mm等参量得到的熔覆层组织与性能最优。此研究对激光熔覆表面强化工艺中合理选择工艺参量提供了理论依据。
        In order to study effect of laser scanning speed on the properties of final cladding layer in laser cladding repair process,Ni-based alloy cladding samples were prepared on QT500 nodular cast iron by laser cladding at different scanning speeds under the condition of synchronous powder feeding.The metallographic microscope of the cladding layer was observed by metallographic microscope, and the microhardness of the cladding layer was measured and analyzed by means of microhardness tester. The hardness, microstructure and sample dilution ratio of the cladding samples were obtained. The results show that the microstructure and properties of the cladding layer would be better with the increase of the laser scanning speed.The microstructure of the cladding layer is more compact and the average microhardness of the uniform cladding layer is improved significantly with the increase of the laser scanning speed. The optimal parameters are laser power of 1.9 kW, scanning speed of 5 mm/s, and the diameter of the spot of 4 mm. The study provides the theoretical basis for reasonable selection of process parameters in laser cladding surface strengthening process.
引文
[1] ZANG C C, WANG Y Z, ZHANG Y D. Effects of laser cladding process on cladding layer qualities of nickel-base alloy[J]. Advanced Materials Research, 2014, 1028:90-95.
    [2] ZHANG R Zh,LI L J,TANG M Q,et al. Research progress of laser cladding technology [J]. Heat Treatment Technology and Equipment, 2017,38(3):7-11(in Chinese).
    [3] SHENG Y D. The fundamental investigation on laser cladding process[D]. Shanghai:Shanghai Maritime Univeristy,2006:7-15;30-40(in Chinese).
    [4] TOYSERKANI E, KHAJEPOUR A, CORBIN S F. Laser cladding[M]. Boca Raton, USA: CRC Press, 2004:35-58.
    [5] YOO H C. Recent study of thermal spray for green automotive industry [J]. Journal of Welding and Joining, 2014, 32(3): 43-52.
    [6] ZHENG G Ch. Study on laser cladding surface coating modification and remanufacture of Cr12MoV steel[D]. Changsha: Hunan University,2016:5-14(in Chinese).
    [7] DENG D, CHEN R, ZHANG H. Present status and development tendency of plasma transferred arc welding[J]. Journal of Mechanical Engineering, 2013, 49(7): 106-112.
    [8] LIU J, YU H, CHEN C, et al. Research and development status of laser cladding on magnesium alloys: A review[J]. Optics & Lasers in Engineering, 2017, 93(7): 195-210.
    [9] ZHENG B J, WEI J Y, JIANG Y H, et al.Wear property of NiCoFeCrTi high entropy alloy coating by laser cladding[J]. Laser Technology, 2016,40(3):432-435(in Chinese).
    [10] YANG H Y. Preparation and properties of WC particle reinforced composite coating[D]. Hefei: Hefei Polytechnic University,2011:13-20(in Chinese).
    [11] AL-SAYED ALI S R, HUSSEIN A H A, NOFAL A A M S, et al. Laser powder cladding of Ti-6Al-4V α/β alloy[J]. Materials, 2017, 10(10): 1178.
    [12] SONG X H, ZOU Y F, XING J K, et al.Comparison between laser cladding Fe-based and Ni-based alloy coatings on 35CrMo[J]. Laser Technology, 2015,39(1):39-45(in Chinese).
    [13] LUO Sh X. Study on ceramic particles reinforced Fe-based composite coating produced by laser claddig on 5CrNiMo steel[D]. Ji'nan: Shandong University, 2016:34-48(in Chinese).
    [14] CAI W W, SHAO Sh, WU L J. Microstructure and properties of Fe-based B4C wear-resistant coating on 16Mn steel[J]. Surface Technology, 2018,47(2):130-135(in Chinese).
    [15] GAO D Q, WANG R, CHEN W, et al. Research progress of improving material properties by laser cladding[J]. Hot Working Technology, 2017,46(12):14-18(in Chinese).
    [16] ZHOU D D, SUN R L. Effect of laser scanning rate on microstructure and properties of nickel-based h-BN composite coating[J]. Heat Treatment of Metals, 2017, 42(4):167-171(in Chinese).
    [17] ZHANG D Q,HAO Y J,LI J H. Effects of laser cladding laser parameters on Ni60A performance of cladding layer[J]. Machinery Design & Manufacture, 2017,311(1):115-118(in Chinese).
    [18] ZHU G X,ZHANG A F,LI D Ch. Effect of process parameters on surface smoothness in laser cladding[J]. Chinese Journal of Lasers, 2010, 37(1):296-301(in Chinese).
    [19] ZHANG W. Influence of scanning speed on microstructure and hardness during laser cladding high-Cr cast iron[J]. Applied Mechanics & Materials, 2013, 395/396(7):1127-1131.
    [20] OCELíK V, FURáR I, HOSSON J T M D. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy[J]. Acta Materialia, 2010, 58(20):6763-6772.
    [21] CHEN Sh G, ZHANG X M, ZHENG Q Ch, et al. Effect of CeO2 on microstructure and properties of Ni60 alloy coating by laser cladding[J]. Laser Technology, 2017,41(6):904-908(in Chinese).