~(60)Co-γ射线诱变大豆“桂夏7号”突变体筛选
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Screen of ~(60)Co-γ Ray Generated Mutants from Soybean 'Guixia7'
  • 作者:孙孟园 ; 白云 ; 李振宇 ; 黎艳 ; 蒋亨珂 ; 孙歆 ; 余靓 ; 刘春燕 ; 杜俊波 ; 杨文钰
  • 英文作者:SUN Mengyuan;BAI Yun;LI Zhenyu;LI Yan;JIANG Hengke;SUN Xin;YU Liang;LIU Chunyan;DU Junbo;YANG Wenyu;College of Agriculture,Sichuan Agriculture University/Key Laboratory of Agriculture Ministry of Crop Physiology,Ecology and Cultivation in Southwest China;
  • 关键词:荫蔽 ; 大豆 ; 诱变 ; 60Co-γ射线 ; 耐荫突变体
  • 英文关键词:shade;;soybean;;mutagenesis;;60Co-γ ray;;shade-tolerant mutant
  • 中文刊名:SCND
  • 英文刊名:Journal of Sichuan Agricultural University
  • 机构:四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室;
  • 出版日期:2018-12-28
  • 出版单位:四川农业大学学报
  • 年:2018
  • 期:v.36;No.141
  • 基金:四川省科技计划资助(2018HH0108);; 国家自然科学基金(31401308、31371555、31671445)
  • 语种:中文;
  • 页:SCND201806004
  • 页数:8
  • CN:06
  • ISSN:51-1281/S
  • 分类号:24-31
摘要
【目的】旨在研究玉米-大豆带状套作复合种植模式下大豆对荫蔽环境响应的分子机理,以期得到对荫蔽环境敏感程度较弱的大豆材料。【方法】以荫蔽敏感大豆品种"桂夏7号"为供试诱变亲本,利用~(60)Co-γ射线对其进行辐照处理,研究其对桂夏7号田间出苗率的影响并分析M1代农艺性状及品质变异。【结果】与对照相比,M1代田间出苗率仅为49.7%,~(60)Co-γ射线对种子萌发和出苗具有强烈抑制作用,M1代植株在株高、分枝数、蛋白质和油含量等方面与对照存在显著差异。其中,矮秆为0.77%,无分枝为0.56%,蛋白质含量和油含量与对照相比,分别高6.7%和5.4%,另筛选到7株粒形较大突变体。【结论】初步构建了含叶片、株型、生育期、粒形、籽粒蛋白质及油脂等突变类型的突变体库,突变植株数分别占总突变植株数的0.56%、3.58%、0.21%、0.98%、4.43%及0.49%,这些不同突变表型的突变体可为大豆的遗传学研究和育种提供有价值的材料。
        【Objective】The aim of the study was to provide soybean materials with less sensitive to shade environment.【Method】The shade-sensitive soybean cultivar‘Guixia7'was irradiated with~(60)Co-γray in the present study, variations in field emergency rate of Guixia7 and the agronomic characters and seed quality of M1 were analyzed.【Result】The emergence rate of seeds in the field barely reached 49.7%in the M1 generation compared to the control, indicating that~(60)Co-γ ray significantly inhibits germination and emergence of soybean seeds. Mutants with different phenotypes of plant height, branch number,protein and oil contents were identified in M1 generation. In the mutant pools, the dwarf and non-branch phenotypes were 0.77% and 0.56%. In addition,one mutant has 6.7% and 5.4% higher protein and oil contents, respectively, than that in the control. Seven plants were found with larger seed size in the M1 mutant pools.【Conclusion】The soybean mutant pools consisting of mutants of leaf shape, plant architecture, growth period,grain shape, grain protein and oil contents have been preliminarily established.These mutants were accounting for 0.56%, 3.58%, 0.21%, 0.98%, 4.43% and 0.49%, respectively,which would provide valuable materials for soybean genetic research and breeding.
引文
[1]夏正俊.大豆基因组解析与重要农艺性状基因克隆研究进展[J].植物学报,2017,52(2):148-158.
    [2]B OUCHEZ D,HOFTE H.Functional genomics in plants[J].Plant Physiology,1998,118(3):725-732.
    [3]李靖,尚霄丽,张建鹏.辐射对果树花粉发芽率及远缘杂交亲和性的影响[J].核农学报,2006,20(5):395-397.
    [4]王静,郭素娟,徐丞.60Co-γ辐照燕山早丰接穗生物效应研究[J].核农学报,2018,32(4):625-632.
    [5]孔广红,倪书邦,贺熙勇,等.60Co-γ射线辐照澳洲坚果种子后的苗期辐射效应[J].核农学报,2018,32(3):417-423.
    [6]春永强,刘勇,刘德春,等.60Co-γ射线辐照金柑花粉对果实生长发育及内源激素含量的影响[J].核农学报,2018,32(3):424-429.
    [7]李风童,包建忠,孙叶,等.60Co-γ射线辐照德国鸢尾杂交种子的生物效应[J].核农学报,2017,31(8):1469-1474.
    [8]MORITA R,KUSABA M,IIDA S,et al.Molecular characterization of mutations induced by gamma irradiation in rice[J].Genes&Genetic Systems,2009,84(5):361-370.
    [9]GAO J S,YANG S X,CHENG W,et al.GmILPA1,encoding an anaphase-promoting complex-like protein,affects leaf petiole angle[J].Plant Physiology,2017,174(2),1167-1176.
    [10]LI Z F,JIANG L X,MA Y S,et al.Development and utilization of a new chemically-induced soybean library with a high mutation density[J].植物学报(英文版),2017,59(1):60-74.
    [11]HWANG W J,KIM M Y,YANG J K,et al.Genome-wide analysis of mutations in a dwarf soybean mutant induced by fast neutron bombardmen[tJ].Euphytica,2015,203(2):399-408.
    [12]王春丽.不同间套作模式的小麦花生玉米间的互补竞争效应及对产量品质的影响[D].泰安:山东农业大学,2006.
    [13]罗玲,于晓波,万燕,等.套作大豆苗期倒伏与茎秆内源赤霉素代谢的关系[J].中国农业科学,2015,48(13):2528-2537.
    [14]李雪华.大豆突变体库的初步构建及突变类型的鉴定[D].南京:南京农业大学,2003.
    [15]韩锁义,张恒友,杨玛丽,等.大豆“南农86-4”突变体筛选及突变体库的构建[J].作物学报,2007,33(12):2059-2062.
    [16]LU S,ZHAO X,HU Y,et al.Natural variation at the soybean Jlocus improves adaptation to the tropics and enhances yield[J].Nature Genetics,2017,49(5):773-779.
    [17]苏伯鸿,李忠峰,邱丽娟.一个大豆理想株型突变体it1的表型和生理鉴定[J].植物遗传资源学报,2016,17(3):523-528.
    [18]张李,赵波,万平,等.快中子诱变小豆‘京农6号’突变体筛选[J].中国农学通报,2012,28(18):53-58.
    [19]刘春贵,李风童,孙叶,等.60Co-γ射线对路易斯安那鸢尾种子的辐射效应研究[J].核农学报,2018,32(1):1-7.
    [20]王军,杨慧卿,袁峰,等.EMS诱变谷子‘长农35号’M1代成熟期株型突变体的鉴定与分析[J].中国农学通报,2011,27(18):84-89.
    [21]罗红兵,赵葵,周文新,等.重离子辐射诱导玉米雄性不育突变系的遗传研究[J].核农学报,2008,22(3):296-299.
    [22]张佳佳,代西梅,赵帅鹏,等.辐照诱变对小麦生理学效应的影响[J].原子核物理评论,2012,29(1):92-96.
    [23]李静.60Co-γ辐照诱变枳突变体筛选[D].长沙:湖南农业大学,2015.
    [24]彭琳,季良.氮离子束注入和钴60伽玛辐射对大豆生物学效应研究初报[J].安徽农业科学,2009,37(14):6399-6402.
    [25]孟永杰,陈锋,帅海威,等.大豆EMS突变体库构建及其M1代重要农艺性状评价[J].大豆科学,2016,35(1):64-69.
    [26]LI W,KATINGRAZZINI L,KRISHNAN S,et al.A novel twostep method for screening shade tolerant mutant plants via dwarfism[J].Frontiers in Plant Science,2016(7):1495.
    [27]武涛,曹家树,虞慧芳.赤霉素合成基因的克隆以及其相关矮化突变体[J].中国细胞生物学学报,2005,27(2):157-164.
    [28]徐冠仁.核农学导论[M].北京:原子能出版社,1997:223-240.
    [29]王长泉,李雅志.果树诱变育种研究进展[J].山东农业大学学报(自然科学版),1996(4):509-513.
    [30]王克晶,李福山.我国野生大豆(G.soja)种质资源及其种质创新利用[J].中国农业科技导报,2000(6):69-72.
    [31]STUPAR R M,SPECHT J E.Chapter four insights from the soybean(Glycine max and Glycine soja)genome:past,present,and future[J].Advances in Agronomy,2013(118):177-204.
    [32]杜丽芬.小麦斑点叶突变体LF2010的生理与遗传定位研究[D].杨凌:西北农林科技大学,2014.
    [33]章松柏,张长青,吴祖建,等.棉花皱缩花叶病的初步研究[J].河南农业科学,2010,39(3):48-50.
    [34]惠军涛.大豆病毒病综合防治技术[J].农业科技通讯,2015(5):282-284.
    [35]WANG P,ZHAO Y,LI Z,et al.Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J].Molecular Cell,2017,69(1):100-112.