不同坡向对高寒草甸秋冬季土壤纤毛虫群落的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Community characteristics of soil ciliates in different slopes of alpine meadow in autumn and winter
  • 作者:刘旻霞 ; 张灿 ; 李瑞 ; 赵瑞东 ; 邵鹏
  • 英文作者:Liu Min-xia;Zhang Can;Li Rui;Zhao Rui-dong;Shao Peng;College of Geographic and Environmental Sciences, Northwest Normal University;
  • 关键词:高寒草甸 ; 土壤原生动物 ; 土壤生态系统 ; 坡向
  • 英文关键词:alpine meadow;;soil protozoa;;soil ecosystem;;slope aspect
  • 中文刊名:LDZK
  • 英文刊名:Journal of Lanzhou University(Natural Sciences)
  • 机构:西北师范大学地理与环境科学学院;
  • 出版日期:2019-06-15
  • 出版单位:兰州大学学报(自然科学版)
  • 年:2019
  • 期:v.55;No.243
  • 基金:国家自然科学基金项目(31360114,31760135)
  • 语种:中文;
  • 页:LDZK201903015
  • 页数:9
  • CN:03
  • ISSN:62-1075/N
  • 分类号:106-113+120
摘要
为了解微气候生境下高寒草甸土壤纤毛虫群落变化特征,于2015年9和12月,在甘南高寒草甸沿不同坡向采取土样,研究土壤纤毛虫群落与环境因子的关系.结果表明,秋季鉴定出土壤纤毛虫9纲17目32科48属105种,冬季9纲17目32科42属78种;旋毛纲为优势类群;优势种为膨胀肾形虫;土壤纤毛虫的垂直分布具有表聚性;不同坡向中土壤纤毛虫群落的复杂程度最高的是西坡,其次是南坡,北坡土壤纤毛虫群落的均匀度指数最高,优势度指数最低,说明土壤纤毛虫群落可以很好地响应坡向的变化;秋季土壤纤毛虫群落较冬季更复杂,表明秋季的生境比冬季更适宜土壤纤毛虫生存.冗余分析表明,不同土壤纤毛虫对各环境因子的敏感程度不同.速效氮与管叶科土壤纤毛虫分布显著正相关,全磷与前管虫科纤毛虫显著正相关,速效磷则与瞬目科和斜吻虫科纤毛虫显著正相关;秋季与土壤pH正相关的土壤纤毛虫有22科,与速效氮正相关的有20科. pH和速效氮是影响秋季甘南土壤纤毛虫分布的重要环境因子.
        In order to understand the characteristics of soil ciliates along a micro-climate habitat in September and December 2015 in an alpine meadow, characteristics and environmental factors of a soil ciliate community were investigated along the slope gradient in a Gannan alpine meadow. Soil ciliates were cultured by the "non-submerged culture method" and the redundancy analysis was used to study the relationship between soil ciliates community and environmental factors. The results showed that 105 species of soil ciliates were identified in the autumn, belonging to 9 families, 17 orders, 32 families and 48 genera. 78 species of soil ciliates were identified in winter, belonging to 9 classes, 17 orders, 32 families and42 genera. Spirotrichea was the dominant group, Litostomatea the sub-dominant group and Colpoda inflata was the dominant species. The vertical distribution of soil ciliates showed polygamorphism. The highest complexity of soil ciliates in different aspects was the west slope, followed by the south slope. The soil ciliate community in the north slope had the highest Pieluo index and the lowest Simpson index. Soil ciliates community in autumn was more complicated than winter. Redundancy analysis showed that therewas a significant positive correlation between available nitrogen and Trachelophyllidae, and total phosphorus was positively correlated with Prorodontidae, while available phosphorus was significantly positively correlated with Glaucomidae and Enchelyidae ciliates. There were 22 families of soil ciliates positively correlated with soil pH in autumn and 20 families positively correlated with available nitrogen.Soil ciliates community could respond well to changes in the slope, and autumn was more suitable than winter for soil ciliate survival and reproduction. Different soil ciliates manifested different sensitivity to various environmental factors. Available nitrogen and pH were important environmental factors affecting the distribution of soil ciliates in autumn in Gannan.
引文
[1]宁应之,杨永强,董玟含,等.土壤纤毛虫群落对不同退还模式生态恢复的响应[J].生态学报, 2018, 38(10):302-309.
    [2]李琦路,宁应之.生态环境中纤毛虫的研究与应用[J].西北师范大学学报:自然科学版, 2008, 44(3):82-87.
    [3] Lynn D H. Soil ciliates(Protozoa, Ciliophora)from Namibia(Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Deser[J]. Polymers for Advanced Technologies, 2001, 18(11):876-882.
    [4]宁应之,沈韫芬.土壤动物研究方法手册[M].北京:中国林业出版社, 1998.
    [5] Li Feng-chao, Li Yan-bo, Luo Dan, et al. Morphology,morphogenesis, and molecular phylogeny of a new soil ciliate, Sterkiella multicirrata sp. nov.(Ciliophora, Hypotrichia)from China[J]. Journal of Eukaryotic Microbiology, 2018, 65:627-636.
    [6]廖崇惠,李健雄,杨悦屏,等.海南尖峰岭热带林土壤动物群落:群落的组成及其特征[J].生态学报, 2002,22(11):1866-1872.
    [7]黄丽荣,张雪萍.大兴安岭寒温带地区中小型土壤动物群落特征[J].应用与环境生物学报, 2008, 14(3):388-393.
    [8]王邵军,阮宏华,汪家社,等.武夷山典型植被类型土壤动物群落的结构特征[J].生态学报, 2010, 30(19):5174-5184.
    [9]姜萍,赵光,叶吉,等.长白山北坡森林群落结构组成及其海拔变化[J].生态学杂志, 2003, 22(6):28-32.
    [10]宁应之,王红军,禹娟红,等.甘肃定西华家岭土壤纤毛虫群落对生态恢复的响应[J].动物学研究, 2011,32(2):223-231.
    [11]杨莹博,曹铨,杨倩,等.青藏高原亚高寒草甸封育区鼢鼠扰动对植物群落物种多样性和生产力的影响[J].兰州大学学报:自然科学版, 2017, 53(5):652-658.
    [12]张小静,王文颖,李文全,等.高寒草甸土壤可溶性有机氮库动态变化格局[J].兰州大学学报:自然科学版,2016, 52(5):623-627.
    [13] Wilbert N. Eine verbesserte technik der protargolimpr?gnation für ciliaten[J]. Mikrokosmos, 1975, 64:171-179.
    [14] Lynn D. The ciliated Protozoa:characterization, classification, and guide to the literature[M]. 3rd ed. New York:Springer Publishing Company, 2011.
    [15] Foissner W. Two new"flagship"ciliates(Protozoa, Ciliophora)from Venezuela:Sleighophrys pustulata and Luporinophrys micelae[J]. European Journal of Protistology, 2005, 41(2):99-117.
    [16] Lee J J, Leedale G F, Bradbury P. An illustrated guide to the protozoa[M]. 2nd ed. Oxford:Wiley-Blackwell,2000.
    [17]孙辉荣,刘旻霞,侯媛.甘南亚高寒草甸土壤纤毛虫群落结构变化对不同坡向的响应[J].生态学报,2017, 37(21):7304-7312.
    [18]宁应之,王娟,刘娜,等.甘肃天水麦积山风景名胜区土壤纤毛虫的物种多样性[J].动物学研究, 2007,28(4):367-373.
    [19]宁应之,张惠茹,王芳国,等.模拟氮沉降对高寒草甸土壤纤毛虫群落的影响[J].生态环境学报, 2018,27(1):1-9.
    [20]甘慧媚,李靖,谭凤仪,等.深圳福田红树林底栖纤毛虫的群落生态学[J].应用与环境生物学报, 2010,16(3):363-368.
    [21]张灿,刘旻霞,李瑞,等.甘南亚高寒草甸冷暖季土壤纤毛虫群落对坡向的响应[J].生态学杂志, 2017,36(9):2465-2472.
    [22]马正学,马瑞林,马晓虹.甘肃临夏东大坡森林公园土壤纤毛虫群落特征[J].西北师范大学学报:自然科学版, 2012, 48(4):82-89.
    [23]廖崇惠,李健雄,杨悦屏,等.海南尖峰岭热带林土壤动物群落:群落结构的季节变化及其气候因素[J].生态学报, 2003, 23(1):139-147.
    [24]郭玉梅,殷秀琴,马辰.长白山地不同地貌类型农田生态系统土壤动物群落特征及季节动态[J].应用与环境生物学报, 2016, 22(6):972-977.
    [25] Yosef S, Stanislav P M, Walter G W. Soil disturbance by soil animals on a topoclimatic gradient[J]. European Journal of Soil Biology, 2004, 40(2):73-76.
    [26]宁应之,沈韫芬.中国典型地带土壤原生动物群落结构及其特征[J].西北师范大学学报:自然科学版,1999, 35(2):50-54.
    [27]吴东辉,胡克,殷秀琴.松嫩草原中南部退化羊草草地生态恢复与重建中大型土壤动物群落生态特征[J].草业学报, 2004, 13(5):121-126.
    [28]邵元虎,张卫信,刘胜杰,等.土壤动物多样性及其生态功能[J].生态学报, 2015, 35(20):6614-6625.
    [29]韩慧莹,殷秀琴,寇新昌.长白山地低山区土壤动物群落特征及其对环境因子变化的响应[J].生态学报,2017, 37(7):2197-2205.