叶序排布超硬磨粒砂轮滚磨结构化沟槽表面的仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reseach on Simulation of Hob-Grinding Structured Groove Surface with Superabrasive Grinding Wheel with Abrasive Phyllotactic Pattern
  • 作者:陈天宇 ; 吕玉山 ; 车东泽 ; 熊伟 ; 李兴山
  • 英文作者:Chen Tianyu;Lv Yushan;Che Dongze;Xiong Wei;Li Xingshan;School of Mechanical Engineering,Shenyang Ligong University;
  • 关键词:超硬磨料砂轮 ; 滚磨 ; 结构化表面 ; 叶序排布仿真
  • 英文关键词:superabrasive grinding wheel;;hob-grinding;;structured surface;;simulation phyllotactic pattern
  • 中文刊名:GJJS
  • 英文刊名:Tool Engineering
  • 机构:沈阳理工大学;
  • 出版日期:2019-05-20
  • 出版单位:工具技术
  • 年:2019
  • 期:v.53;No.549
  • 基金:国家自然科学基金(51875368,51175352)
  • 语种:中文;
  • 页:GJJS201905015
  • 页数:5
  • CN:05
  • ISSN:51-1271/TH
  • 分类号:70-74
摘要
基于生物学的叶序排布理论设计了叶序排布超硬磨粒砂轮,并提出了应用该砂轮滚磨外圆表面结构化沟槽的方法。对叶序排布超硬磨粒砂轮的滚磨加工过程进行运动学仿真研究,获得了磨削参数的变化对磨削区域结构化沟槽表面形貌的影响规律。仿真结果表明:砂轮与工件之间的转速比决定了沟槽的数量,且转速比越大沟槽间距越小;轴向进给速度越小,加工出沟槽表面的表面波纹度越低,当轴向进给速度超过临界轴向进给速度时,将无法形成沟槽表面;磨削深度越深,磨痕截面尺寸越大,磨痕长度越长。
        A kind of the super abrasive grinding wheel,which has defined abrasive grain pattern,are designed based on the phyllotaxis theory of biology,and puts forward the method of hob-grinding the structured groove surface.The kinematics simulation is proceeded to the process of grinding.The change of grinding parameters has an impact on the surface morphology of the structured groove surface in the grinding area,and the influence rule of the change of grinding parameters is obtained.The simulation results show that the speed ratio between the grinding wheel and workpiece determines the number of grooves,and as the speed ratio increases,the distance between grooves will decrease.In the grinding process,the smaller the axial feeding speed is,the lower the waviness of the will be.When the axial feeding speed exceeds the critical axial feeding speed,the groove surface will not be generated.As the depth of grinding deepens,the section size of grinding mark becomes larger and the length of grinding mark becomes longer.
引文
[1]谢晋,李萍,吴可可,等.微结构表面精密磨削技术及其功能特性开发[J].机械工程学报,2013,49(23):182-190.
    [2]鲁艳军,谢晋,程剑,等.陶瓷飞行体的微沟槽结构曲面精密磨削与减阻性能[J].机械工程学报,2014,50(15):180-186.
    [3]J Xie,M J Luo,J L He,et al.Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy[J].International Journal of Precision Engineering and Manufacturing,2012,13(10):1845-1862.
    [4]S T Chen,S J Lin.Development of an extremely thin grinding-tool for grinding micro grooves in optical glass [J].Journal of Materials Processing Technology,2011,211(10):1581-1589.
    [5]Yan Lou,Guohui Wu.Development of a continuous injection direct rolling imprint system for microstructure thin plate [J].Microsystem Technologies,2017,23(7):2509-2519.
    [6]B Denkena,L D Leon,B Wang.Grinding of microstructured functional surfaces:a novel strategy for dressing of microprofiles [J].Production Engineering,2009,3(1):41-48.
    [7]B Denkena,J K?hler,B Wang.Manufacturing of functional riblet structures by profile grinding [J].CIRP Journal of Manufacturing Science and Technology,2010,3(1):14-26.
    [8]G Hirt,M Thome.Rolling of functional metallic surface structures[J].CIRP Annals Manufacturing Technology,2008,57(1):317-320.
    [9]Fritz Klocke,Bj?rn Feldhaus,Sebastian Mader.Development of an incremental rolling process for the production of defined riblet surface structures[J].Production Engineering,2007,1(3):233-237.
    [10]Van Iterson G.Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen[M].Jena:Gustav Fischer,1907.
    [11]吕玉山,王军,赵成义,等.一种磨粒族叶序排布的端面砂轮及其铣磨实验[J].兵工学报,2013,34(12):1569-1574.
    [12]申芳芳,张万里,李德志.植物叶序研究的源流与发展[J].东北林业大学学报,2006(5):83-86.
    [13]孙桓.机械原理[M].北京:高等教育出版社,2006.