超临界二氧化碳火力发电系统比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative Study of Supercritical Carbon Dioxide Thermal Power System
  • 作者:陈渝楠 ; 张纯 ; 蒋世希 ; 李红智 ; 姚明宇
  • 英文作者:CHEN Yunan;ZHANG Chun;JIANG Shixi;LI Hongzhi;YAO Mingyu;Xi'an Thermal Power Research Institute Co.Ltd.;
  • 关键词:Aspen ; plus ; 超临界二氧化碳 ; 火力发电 ; 600MW ; 布雷顿循环 ; 系统比较
  • 英文关键词:Aspen plus;;supercritical CO_2;;thermal power;;600MW;;Brayton cycle;;system comparison
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:西安热工研究院有限公司;
  • 出版日期:2019-03-29 10:48
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.618
  • 基金:国家重点研发计划项目(2018YFB1501004);; 国家自然科学基金项目(51706181,51806172);; 华能集团重点科技项目(HNKJ15-H07)~~
  • 语种:中文;
  • 页:ZGDC201907024
  • 页数:10
  • CN:07
  • ISSN:11-2107/TM
  • 分类号:245-254
摘要
利用Aspen plus对煤基超临界二氧化碳布雷顿循环分流再压缩常规、二次再热和多级压缩火力发电系统建立了工程化系统模型,并以600MW机组为基础,研究了在相同压缩分流系数、压缩机入/出口压力、再热透平入口压力、主压缩机入口温度、高压透平和再热透平入口温度对系统循环效率和回热器换热效率的影响并进行比较,总的来说,在该系统布置状态下,压缩机分流系数、压缩机入/出口压力与主压缩机入口温度对系统性能和回热器换热效率影响显著,其他因素影响并不明显。二次再热系统性能优于原始循环系统和多级压缩系统,二次再热系统能达到最佳的系统效率,多级压缩系统并未对系统效率有效提升。
        The engineering system model of coal based supercritical carbon dioxide brayton cycle splite-flow recompression normal system, two reheating system and multistage compression system were established with aspen plus. The effects of the same compression split coefficient, the inlet pressure of reheating turbine, the inlet and outlet pressure of the compressor, the inlet temperature of the main compressor,the inlet temperature of the high pressure turbine and reheating turbine on the system cycle efficiency and effectiveness of heat exchanger were analyzed and comparison based on the 600MW thermal power system. In general, the effect of the compression split coefficient, the inlet and outlet pressure of the compressor and the inlet temperature of the main compressor on the system cycle efficiency and effectiveness of heat exchanger are significant, and the effect of other factions are not obvious. The performance of the two reheating system is better than the normal system and multi-stage compression system, and the multi-stage compression system does not effectively improve the system efficiency.
引文
[1]Lee J,Baik S,Cho S K,et al.Issues in performance measurement of CO2 compressor near the critical point[J].Applied Thermal Engineering,2016,94:111-121.
    [2]Rinaldi E,Pecnik R,Colonna P.Computational fluid dynamic simulation of a supercritical CO2 compressor performance map[J].Journal of Engineering for Gas Turbines and Power,2015,137(7):072602.
    [3]Chu Wenxiao,Li Xionghui,Ma Ting,et al.Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins[J].Applied Thermal Engineering,2017,114:1309-1318.
    [4]Vitillo F,Cachon L,Reulet P,et al.An innovative plate heat exchanger of enhanced compactness[J].Applied Thermal Engineering,2015,87:826-838.
    [5]Li Mingjia,Zhu Hanhui,Guo Jiaqi,et al.The development technology and applications of supercritical CO2 power cycle in nuclear energy,solar energy and other energy industries[J].Applied Thermal Engineering,2017,126:255-275.
    [6]Pham H S,Alpy N,Ferrasse J H,et al.Mapping of the thermodynamic performance of the supercritical CO2cycle and optimisation for a small modular reactor and a sodium-cooled fast reactor[J].Energy,2015,87:412-424.
    [7]Ishiyama S,Muto Y,Kato Y,et al.Study of steam,helium and supercritical CO2 turbine power generations in prototype fusion power reactor[J].Progress in Nuclear Energy,2008,50(2-6):325-332.
    [8]Linares J I,Herranz L E,Moratilla B Y,et al.Power conversion systems based on Brayton cycles for fusion reactors[J].Fusion Engineering and Design,2011,86(9-11):2735-2738.
    [9]Vaclav D.A supercritical carbon dioxide cycle for next generation nuclear reactors[D].Massachusetts:Massachusetts Institute of Technology,2004.
    [10]Nathan C.Control strategies for supercritical carbon dioxide power conversion systems[D].Massachusetts:Massachusetts Institute of Technology,2007.
    [11]张一帆,王生鹏,刘文娟,等.超临界二氧化碳再压缩再热火力发电系统关键参数的研究[J].动力工程学报,2016,36(10):827-833,852.Zhang Yifan,Wang Shengpeng,Liu Wenjuan,et al.Study on key parameters of a supercritical fossil-fired power system with CO2recompression and reheat cycles[J].Journal of Chinese Society of Power Engineering,2016,36(10):827-833,852(in Chinese).
    [12]陈渝楠,张一帆,刘文娟,等.超临界二氧化碳火力发电系统模拟研究[J].热力发电,2017,46(2):22-27,41.Chen Yunan,Zhang Yifan,Liu Wenjuan,et al.Simulation study on supercritical carbon dioxide thermal power system[J].Thermal Power Generation,2017,46(2):22-27,41(in Chinese).
    [13]张一帆,李红智,姚明宇,等.600MW煤基超临界二氧化碳发电系统回热器和预冷器的概念设计[J].中国电机工程学报,2017,37(24):7223-7229.Zhang Yifan,Li Hongzhi,Yao Mingyu,et al.Conceptual design of the recuperator and precooler for a 600MW fossil-based supercritical CO2 power generation system[J].Proceedings of the CSEE,2017,37(24):7223-7229(in Chinese).
    [14]Le Moullec Y.Conception of a pulverized coal fired power plant with carbon capture around a supercritical carbon dioxide brayton cycle[J].Energy Procedia,2013,37:1180-1186.
    [15]Le Moullec Y.Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle[J].Energy,2013,49:32-46.
    [16]Park S,Kim J,Yoon M,et al.Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 Brayton power cycle[J].Applied Thermal Engineering,2018,130:611-623.
    [17]Ahn Y,Bae S J,Kim M,et al.Review of supercritical CO2 power cycle technology and current status of research and development[J].Nuclear Engineering and Technology,2015,47(6):647-661.
    [18]Al-Sulaiman F A,Atif M.Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J].Energy,2015,82:61-71.
    [19]Yari M,Sirousazar M.A novel recompression S-CO2brayton cycle with pre-cooler exergy utilization[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2010,224(7):931-946.
    [20]Akbari A D,Mahmoudi S M S.Thermoeconomic analysis&optimization of the combined supercritical CO2(carbon dioxide)recompression Brayton/organic Rankine cycle[J].Energy,2014,78:501-512.
    [21]Serrano I P,Linares J I,Cantizano A,et al.A novel supercritical CO2 power cycle for energy conversion in fusion power plants[J].Fusion Science and Technology,2013,64(3):483-487.
    [22]Kato Y,Nitawaki T,Muto Y.Medium temperature carbon dioxide gas turbine reactor[J].Nuclear Engineering and Design,2004,230(1-3):195-207.
    [23]Ma Yuegeng,Liu Ming,Yan Junjie,et al.Thermodynamic study of main compression intercooling effects on Supercritical CO2 recompression Brayton cycle[J].Energy,2017,140:746-756.