热协同催化技术在能源领域的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photothermal synergistic catalytic technology in energy field
  • 作者:王丽敏 ; 王利清 ; 张一弛 ; 苏海全
  • 英文作者:WANG Limin;WANG Liqing;ZHANG Yichi;SU Haiquan;School of Chemistry and Chemical Engineering,Inner Mongolia University;
  • 关键词:光热催化 ; 一氧化碳 ; 加氢 ; 二氧化碳 ; 选择催化还原 ; 制氢
  • 英文关键词:photothermocatalysis;;carbon monoxide;;hydrogenation;;carbon dioxide;;selective catalytic reduction;;hydrogen production
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:内蒙古大学化学化工学院;
  • 出版日期:2017-04-28 11:35
  • 出版单位:化工进展
  • 年:2017
  • 期:v.36;No.310
  • 基金:国家自然科学基金(21461017);; 高等学校博士学科点专项科研基金(20131501110001)项目
  • 语种:中文;
  • 页:HGJZ201707018
  • 页数:7
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:126-132
摘要
光热催化是在光催化的基础上同时加热,或在热催化的基础上同时进行光照以达到共同催化目的的一种新型催化手段,是当前催化领域的研究热点。文章介绍了光热协同催化在能源合成领域的应用,包括光热催化CO加氢、光热催化CO_2还原、光热分解水制氢等。研究发现,光催化与热催化耦合确实能够高效驱动反应的进行,明显改善了单一光催化或单一热催化的不足。在催化CO加氢方面,引入光照能明显提高CO的转化效率,同时能够调控烃类产物分布;在催化CO_2还原方面,通过调变合适的光热反应条件,能够实现高效地、选择性地将CO_2还原为CO、CH_4或其他烃类产物;在催化H2O分解制氢方面,在温和条件下提高了产氢效率。与此同时,本文也分析了部分体系的光热协同作用机制以及现阶段研究的不足之处。最后展望了光热催化的发展前景,以期对于光热协同驱动体系的研究起到积极的促进作用。
        Photothermocatalysis has presented a novel technology which introduces simultaneous light into thermocatalytic system or heat into photocatalytic system for the purpose of co-catalysis,which has become popular in catalysis field. This paper mainly reviews chemical reactions in the field of energy synthesis under cooperative catalysis condition,including photothermocatalytic hydrogenation of CO,photothermocatalytic CO_2 reduction,and photothermal hydrolysis,etc. The current results suggested that the coupling of photocatalysis and thermocatalysis could drive reaction more efficiently,and overcome the obstacles existed in single-driven catalytic system. In the field of CO hydrogenation reaction,the introduction of illumination not only can obviously increase the CO conversion efficiency but also control hydrocarbon products' distribution. In the field of CO_2 reduction,it can be implemented that converting CO_2 into CO,CH_4,or other hydrocarbon products efficiently and selectively by modulating appropriate photothermal conditions. In the field of hydrolysis reaction,hydrogen production efficiency can be improved under mild conditions. Meanwhile, the related photothermal synergistic reaction mechanisms and the deficiencies at the present stage in various systems have been summarized. Finally,the prospects for future photothermal catalytic study are proposed,which might provide a positive pathway for developing new photothermal catalytic systems.
引文
[1]李娟,吴梁鹏,邱勇,等.费托合成催化剂的研究进展[J].化工进展,2013,32(s1):100-109.LI J,WU L P,QU Y,et al.Research advances in catalysts for Fischer-Tropsch synthesis[J].Chemical Industry and Engineering Progress,2013,32(s1):100-109.
    [2]胡徐腾,李振宇,王正元.我国能源化工面临的挑战及对策思考(Ⅱ)[J].化工进展,2006,25(4):351-356.HU X T,LI Z Y,WANG Z Y.Challenges for Chinese energy chemical industry and approaches(Ⅱ)[J].Chemical Industry and Engineering Progress,2006,25(4):351-356.
    [3]MA Y,WANG X L,JIA Y S,et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J].Chemical Reviews,2014,114(19):9987-10043.
    [4]王永杰.21世纪能源走势浅析[J].精细石油化工进展,2000,1(6):1-7.WANG Y J.Analysis of energy trend in 21st Century[J].Advances in Fine Petrochemicals,2000,1(6):1-7.
    [5]李振宇,黄格省.推动我国能源生产革命的途径分析[J].化工进展,2015,34(10):3521-3529.LI Z Y,HUANG G S.Analysis on ways to promote energy production revolution in China[J].Chemical Industry and Engineering Progress,2015,34(10):3521-3529.
    [6]张骞,周莹,张钊,等.表面等离子体光催化材料[J].化学进展,2013,25(12):2020-2027.ZHANG Q,ZHOU Y,ZHANG Z,et al.Plasmonic photocatalyst[J].Progress in Chemistry,2013,25(12):2020-2027.
    [7]WANG H,ZHOU W,LIU J X,et al.Platinum modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis[J].Journal of the American Chemical Society,2013,135(10):4149-4158.
    [8]VAN DER LAAN G P,BEENACKERS A.Kinetics and selectivity of the Fischer-Tropsch synthesis:a literature review[J].Catalysis Reviews,1999,41(3/4):255-318.
    [9]KANG J C,ZHANG S L,ZHANG Q H,et al.Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel[J].Angewandte Chemie International Edition,2009,121(14):2603-2606.
    [10]郭向云,郭小宁.一种光催化费托合成方法及使用的催化剂:104403682 A[P].2015-03-11.GUO X Y,GUO X N.A photocatalytic Fischer-Tropsch synthesis method and the used catalyst:104403682 A[P].2015-03-11.
    [11]GUO X N,JIAO Z F,JIN G Q,et al.Photocatalytic Fischer-Tropsch Synthesis on graphene-supported worm-like ruthenium nanostructures[J].ACS Catalysis,2015,5(6):3836-3840.
    [12]张铁锐,陈广波,赵宇飞,等.一种光催化一氧化碳加氢制备碳二以上高碳烃用镍基光催化剂的制备方法及应用:105056952A[P].2015-11-18.ZHANG T R,CHEN G B,ZHAO Y F,et al.Preparation and application of a nickel-based photocatalyst for the production of C2+hydrocarbons in the photocatalytic CO hydrogenation reaction:105056952 A[P].2015-11-18.
    [13]ZHAO Y,ZHAO B,LIU J,et al.Oxide-modified nickel photocatalyst for the production of hydrocarbons in visible light[J].Angewandte Chemie International Edition,2016,55:4215-4219.
    [14]YU S Y,ZHANG T,XIE Y H,et al.Synthesis and characterization of iron-based catalyst on mesoporous titania for photo-thermal FT synthesis[J].International Journal of Hydrogen Energy,2015,40(1):870-877.
    [15]WANG L M,WANG L Q,ZHANG Y C,et al.Effect of photocatalysis on Fischer-Tropsch synthesis activity and selectivity of the Ti O2 nanotube supported Co Catalyst[EB/OL].Beijing:Sciencepaper Online[2016-12-27].http://www.paper.edu.cn/releasepaper/content/201612-557.
    [16]LIN X H,YANG K,SI R R,et al.Photo-assisted catalytic methanation of CO in H2-rich stream over Ru/Ti O2[J].Applied Catalysis B:Environmental,2014,147(7):585-591.
    [17]LIN X H,LIN L L,HUANG K,et al.CO methanation promoted by UV irradiation over Ni/Ti O2[J].Applied Catalysis B:Environmental,2015,168:416-422.
    [18]GUO D Z,XUE Z Q,CHEN Q,et al.Synthesis of methane in nanotube channels by a flash[J].Journal of the American Chemical Society,2006,128(47):15102-15103.
    [19]LI X,WEN J Q,LOW J X,et al.Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J].Science China Materials,2014,57(1):70-100.
    [20]HABISREUTINGER S N,SCHMIDT-MENDE L,STOLARCZYK J K.Photocatalytic reduction of CO2 on Ti O2 and other semiconductors[J].Angewandte Chemie International Edition,2013,52(29):7372-7408.
    [21]HALMANN M.Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells[J].Nature,1978,275(5676):115-116.
    [22]CHEN X B,SHEN S H,GUO L J,et al.Semiconductor-based photocatalytic hydrogen generation[J].Chemical Reviews,2010,110(11):6503-6570.
    [23]JIA L S,LI J J,FANG W P.Enhanced visible-light active C and Fe co-doped La Co O3 for reduction of carbon dioxide[J].Catalysis Communications,2009,11(2):87-90.
    [24]LI P,ZHOU Y,TU W G,et al.Direct growth of Fe2V4O13nanoribbons on a stainless-steel mesh for visible-light photoreduction of CO2 into renewable hydrocarbon fuel and degradation of gaseous isopropyl alcohol[J].Chem Plus Chem,2013,78(3):274-278.
    [25]TSAI C W,CHEN H M,LIU R S,et al.Ni@Ni O core-shell structure-modified nitrogen-doped In Ta O4 for solar-driven highly efficient CO2 reduction to methanol[J].The Journal of Physical Chemistry C,2011,115(20):10180-10186.
    [26]CHEN J S,XIN F,QIN S Y,et al.Photocatalytically reducing CO2to methyl formate in methanol over Zn S and Ni-doped Zn S photocatalysts[J].Chemical Engineering Journal,2013,230:506-512.
    [27]HWANG J S,CHANG J S,PARK S E,et al.Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts[J].Topics in Catalysis,2005,35(3/4):311-319.
    [28]ASHFORD D L,GISH M K,VANNUCCI A K,et al.Molecular chromophore-catalyst assemblies for solar fuel applications[J].Chemical Reviews,2015,115(23):13006-13049.
    [29]SONG W,LUO H,HANSON K,et al.Visualization of cation diffusion at the Ti O2 interface in dye sensitized photoelectrosynthesis cells(DSPEC)[J].Energy&Environmental Science,2013,6(4):1240-1248.
    [30]CHUEH W C,FALTER C,ABBOTT M,et al.High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J].Science,2010,330(6012):1797-1801.
    [31]STAMATIOU A,LOUTZENHISER P G,STEINFELD A.Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/Zn O and Fe O/Fe3O4 redox reactions[J].Chemistry of Materials,2009,22(3):851-859.
    [32]MENG X G,WANG T,LIU L Q,et al.Photothermal conversion of CO2 into CH4 with H2 over groupⅧnanocatalysts:an alternative approach for solar fuel production[J].Angewandte Chemie International Edition,2014,126(43):11662-11666.
    [33]CHANMANEE W,ISLAM M F,DENNIS B H,et al.Solar photothermochemical alkane reverse combution[J].Proceedings of the National Academy of Sciences of the United States of America,2016,149(Pt3):1094-1095.
    [34]LIN L L,WANG K,YANG K,et al.The visible-light-assisted thermocatalytic methanation of CO2 over Ru/Ti O(2-x)Nx[J].Applied Catalysis B:Environmental,2016,204:440-455.
    [35]FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
    [36]RITTERSKAMP P,KUKLYA A,KERPEN K,et al.A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation—reversible storage of oxygen and hydrogen[J].Angewandte Chemie International Edition,2007,46(41):7770-7774.
    [37]李秋叶,杜全超,吕功煊.不同压力下光热催化分解水制氢行为研究[J].分子催化,2008,22(2):177-181.LI Q Y,DU Q C,LV G X.Investigation of photothermal-catalytic hydrogen evolution from water splitting under different pressure[J].Journal of Molecular Catalysis(China),2008,22(2):177-181.
    [38]LI Q Y,LV G X.Significant effect of pressure on the H2 releasing from photothermal-catalytic water steam splitting over Ti Si2 and Pt/Ti O2[J].Catalysis Letters,2008,125(3):376-379.
    [39]祝星,王华,魏永刚,等.金属氧化物两步热化学循环分解水制氢[J].化学进展,2010,22(5):1010-1020.ZHU X,WANG H,WEI Y G,et al.Hydrogen production by two-step water-splitting thermocatalytic cycle based on metal oxide redox system[J].Progress in Chemistry,2010,22(5):1010-1020.
    [40]KODAMA T,SHIMIZU T,SATOH T,et al.Stepwise production of CO-rich syngas and hydrogen via solar methane reforming by using a Ni(Ⅱ)-ferrite redox system[J].Solar Energy,2002,73(5):363-374.
    [41]MüLLER R,STEINFELD A.H2O-splitting thermochemical cycle based on Zn O/Zn-redox:quenching the effluents from the Zn O dissociation[J].Chemical Engineering Science,2008,63(1):217-227.
    [42]STEINFELD A.Solar thermochemical production of hydrogen——a review[J].Solar Energy,2005,78(5):603-615.
    [43]ZHANG Y W,CHEN J C,XU C Y,et al.A novel photo-thermochemical cycle of water-splitting for hydrogen production based on Ti O2-x/Ti O2[J].International Journal of Hydrogen Energy,2016,41(4):2215-2221.