一种面向粗粒度可重构阵列的硬件木马检测算法的设计与实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Implementation of Hardware Trojan Detection Algorithm for Coarse-grained Reconfigurable Arrays
  • 作者:严迎建 ; 刘敏 ; 邱钊洋
  • 英文作者:YAN Yingjian;LIU Min;QIU Zhaoyang;The PLA's Information Engineering University;
  • 关键词:硬件木马检测 ; 粗粒度可重构密码阵列 ; 逻辑指纹 ; 多变体
  • 英文关键词:Hardware Trojan detection;;Coarse-grained reconfigurable cryptographic array;;Logic fingerprints;;Multiple variants
  • 中文刊名:DZYX
  • 英文刊名:Journal of Electronics & Information Technology
  • 机构:解放军信息工程大学;
  • 出版日期:2018-10-22 17:01
  • 出版单位:电子与信息学报
  • 年:2019
  • 期:v.41
  • 语种:中文;
  • 页:DZYX201905034
  • 页数:8
  • CN:05
  • ISSN:11-4494/TN
  • 分类号:246-253
摘要
硬件木马检测已成为当前芯片安全领域的研究热点,现有检测算法大多面向ASIC电路和FPGA电路,且依赖于未感染硬件木马的黄金芯片,难以适应于由大规模可重构单元组成的粗粒度可重构阵列电路。因此,该文针对粗粒度可重构密码阵列的结构特点,提出基于分区和多变体逻辑指纹的硬件木马检测算法。该算法将电路划分为多个区域,采用逻辑指纹特征作为区域的标识符,通过在时空两个维度上比较分区的多变体逻辑指纹,实现了无黄金芯片的硬件木马检测和诊断。实验结果表明,所提检测算法对硬件木马检测有较高的检测成功率和较低的误判率。
        Hardware Trojan horse detection has become a hot research topic in the field of chip security. Most existing detection algorithms are oriented to ASIC circuits and FPGA circuits, and rely on golden chips that are not infected with hardware Trojan horses, which are difficult to adapt to the coarse-grained reconfigurable array consisting of large-scale reconfigurable cells. Therefore, aiming at the structural characteristics of Coarsegrained reconfigurable cryptographic logical arrays, a hardware Trojan horse detection algorithm based on partitioned and multiple variants logic fingerprints is proposed. The algorithm divides the circuit into multiple regions, adopts the logical fingerprint feature as the identifier of the region, and realizes the hardware Trojan detection and diagnosis without golden chip by comparing the multiple variant logic fingerprints of the regions in both dimensions of space and time. Experimental results show that the proposed detection algorithm has high detection success rate and low misjudgment rate for hardware Trojan detection.
引文
[1]AGRAWAL D,BAKTIR S,KARAKOYUNLU D,et al.Trojan detection using IC fingerprinting[C].IEEESymposium on Security and Privacy.IEEE Computer Society,Berkeley,USA,2007:296-310.doi:10.1109/SP.2007.36.
    [2]KITSOS P,SIMOS D E,TORRES-Jimenez J,et al.Exciting FPGA cryptographic trojans using combinatorial testing[C].IEEE International Symposium on Software Reliability Engineering,Gaithersbury,USA,2016:69-76.doi:10.1109/ISSRE.2015.7381800.
    [3]赵剑锋,史岗.硬件木马研究动态综述[J].信息安全学报,2017,2(1):74-90.doi:10.19363/j.cnki.cn10-1380/tn.2017.01.006.ZHAO Jianfeng and SHI Gang.A survey on the studies of hardware trojan[J].Journal of Cyber Security,2017,2(1):74-90.doi:10.19363/j.cnki.cn10-1380/tn.2017.01.006.
    [4]COMPTON K and HAUCK S.Reconfigurable computing:A survey of systems and software[J].ACM Computing Surveys,2002,34(2):171-210.doi:10.1145/508352.508353v.
    [5]VEERANNA N and SCHAFER B C.Hardware trojan avoidance and detection for dynamically re-configurable FPGAs[C].International IEEE Conference on FieldProgrammable Technology.Xi'an,China,2017:193-196.doi:10.1109/FPT.2016.7929531.
    [6]LIU Leibo,ZHOU Zhuoquan,WEI Shaojun,et al.DRMaSV:Enhanced capability against hardware trojans in coarse grained reconfigurable architectures[J].IEEETransactions on Computer-Aided Design of Integrated Circuits and Systems,2017,37(4):782-795.doi:10.1109/TCAD.2017.2729340.
    [7]KHALEGHI B,AHARI A,ASADI H,et al.FPGA-based protection scheme against hardware trojan horse insertion using dummy logic[J].IEEE Embedded Systems Letters,2015,7(2):46-50.doi:10.1109/LES.2015.2406791.
    [8]PIRPILIDIS F,STEFANIDIS K G,VOYIATZIS A G,et al.On the effects of ring oscillator length and hardware Trojan size on an FPGA-based implementation of AES[J].Microprocessors&Microsystems,2017,54(1):75-82.doi:10.1016/j.micpro.2017.09.001.
    [9]SARAN T,RANJANI R S,DEVI M N,et al.A region based fingerprinting for hardware Trojan detection and diagnosis[C].International Conference on Signal Processing and Integrated Networks.Noida,India.2017:166-172.doi:10.1109/SPIN.2017.8049937.
    [10]MAL-SARKAR S,KARAM R,NARASIMHAN S,et al.Design and validation for FPGA trust under hardware trojan attacks[J].IEEE Transactions on Multi-Scale Computing Systems,2017,2(3):186-198.doi:10.1109/TMSCS.2016.2584052.
    [11]陈韬,罗兴国,李校南,等.一种基于流处理框架的可重构分簇式分组密码处理结构模型[J].电子与信息学报,2014,36(12):3027-3034.doi:10.3724/SP.J.1146.2014.00023.CHEN Tao,LUO Xingguo,LI Xiaonan,et al.An architecture of stream based reconfigurable clustered block cipher processing array[J].Journal of Electronics&Information Technology,2014,36(12):3027-3034.doi:10.3724/SP.J.1146.2014.00023.
    [12]WAKSMAN A and SETHUMADHAVAN S.Silencing hardware backdoors[C].IEEE Security and Privacy.Berkeley,USA,2011:49-63.doi:10.1109/SP.2011.27.
    [13]SASHANK K A,REDDY H S,PAVITHRAN P,et al.Hardware trojan detection using effective test patterns and selective segmentation[C].International Symposium on Security in Computing and Communication.Singapore,2017:379-386.doi:10.1007/978-981-10-6898-0_31.
    [14]SALMANI H,TEHRANIPOOR M,and PLUSQUELLIC J.A layout-aware approach for improving localized switching to detect hardware trojans in integrated circuits[C].IEEEInternational Workshop on Information Forensics and Security,Seattle,USA,2011:1-6.doi:10.1109/WIFS.2010.5711438.
    [15]XIAO Kan,FORTE D,JIN Yier,et al.Hardware trojans:lessons learned after one decade of research[J].ACMTransactions on Design Automation of Electronic Systems,2016,22(1):1-23.doi:10.1145/2906147.
    [16]MCINTYRE D,WOLFF F,PAPACHRISTOU C,et al.Trustworthy computing in a multi-core system using distributed scheduling[C].IEEE On-Line Testing Symposium.Corfu,Greece,2010:211-213.