Mn~(2+)掺杂NaBiF_4∶Yb/Er体系的可调控上转换发光
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable Upconversion Luminescence of Mn~(2+) Doping NaBiF_4∶Yb/Er Particles
  • 作者:苏越 ; 雷朋朋 ; 冯婧 ; 张洪杰
  • 英文作者:SU Yue;LEI Pengpeng;FENG Jing;ZHANG Hongjie;State Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Science;University of Chinese Academy of Sciences;
  • 关键词:NaBiF4 ; 上转换发光 ; 能量传递 ; 变温光谱 ; Mn2+掺杂
  • 英文关键词:NaBiF4;;Upconversion luminescence;;Energy transfer;;Temperature-dependent spectrum;;Mn2+ doping
  • 中文刊名:GDXH
  • 英文刊名:Chemical Journal of Chinese Universities
  • 机构:中国科学院长春应用化学研究所稀土资源利用国家重点实验室;中国科学院大学;
  • 出版日期:2017-12-10
  • 出版单位:高等学校化学学报
  • 年:2017
  • 期:v.38
  • 基金:国家自然科学基金(批准号:21371165,21590794,21210001,21521092);; 中国科学院前沿科学重点研究项目(批准号:YZDY-SSW-JSC018)资助~~
  • 语种:中文;
  • 页:GDXH201712001
  • 页数:9
  • CN:12
  • ISSN:22-1131/O6
  • 分类号:11-19
摘要
采用溶剂热法制备了不同Mn~(2+)掺杂量的NaBiF_4∶Yb/Er/Mn上转换发光体系,研究了其形貌、晶相、上转换发光性能随Mn~(2+)掺杂量的变化,并探讨了该体系的能量传递机理.实验结果表明,Mn~(2+)的掺杂不会引起NaBiF_4从六方相转变为立方相,但会增大其尺寸;同时在NaBiF_4体系中,Mn~(2+)可以与Er~(3+)进行能量传递,使红光发射得到增强,并且随着Mn~(2+)浓度的增加,红/绿光发射强度比也会随之增大.此外,还考察了NaBiF_4∶Yb/Er/Mn体系的变温发射光谱,发现当温度升高时,红/绿光强度比以及520 nm绿光与540 nm绿光发射强度比都总体上呈增大趋势.
        NaBiF_4∶Yb/Er/Mn samples with different concentrations of Mn~(2+) were fabricated via the solvothermal method.Also,the morphology and crystal phase,the changes of upconversion luminescence(UCL) upon different doping amounts of Mn~(2+)were investigated.Meanwhile,the mechanism of energy transfer in NaBiF_4∶Yb/Er/Mn was also discussed.The results indicate that,for NaBiF_4∶Yb/Er,Mn~(2+) doping does not induce transition from hexagonal to cubic phase,but increases the size of the particles.Meanwhile,the energy transfer processes between Er~(3+) and Mn~(2+) can take place in NaBiF_4 host,which eventually enhances the red emission to a certain degree.With the increasing of the concentration of Mn~(2+),the intensity ratio of red to green emission is also increased.In addition,the temperature-dependent UCL spectra of NaBiF_4∶Yb/Er/Mn was investigated,and the intensity ratios of red to green emission and 520 nm green emission to 540 nm green emission are generally increased with elevated temperature.
引文
[1]Auzel F.,C.R.Acad.Sci.,1996,262,1016—1019
    [2]Auzel F.,Chem.Rev.,2004,104,139—174
    [3]Suyver J.F.,Grimm J.,van veen M.K.,Biner D.,Krmer K.W.,Güdel H.U.,J.Lumin.,2006,117,1—12
    [4]Wang F.,Han Y.,Lim C.S.,Lu Y.,Wang J.,Xu J.,Chen H.,Zhang C.,Hong M.,Liu X.,Nature,2010,463,1061—1065
    [5]Wang F.,Liu X.,J.Am.Chem.Soc.,2008,130,5642—5643
    [6]Li Z.,Zhang Y.,Jiang S.,Adv.Mater.,2008,20,4765—4769
    [7]Chatterjee D.K.,Rufaihah A.J.,Zhang Y.,Biomaterials,2008,29,937—943
    [8]Zhou J.,Liu Z.,Li F.,Chem.Soc.Rev.,2012,41,1323—1349
    [9]Gai S.,Li C.,Yang P.,Lin J.,Chem.Rev.,2014,114,2343—2389
    [10]Lei L.,Chen D.,Huang P.,Xu J.,Zhang R.,Wang Y.,Nanoscale,2013,5,11298—11305
    [11]Wang F.,Deng R.,Wang J.,Wang Q.,Han Y.,Zhu H.,Chen X.,Liu X.,Nat.Mater.,2011,10,968—973
    [12]Shen J.,Sun L.D.,Yan C.H.,Dalton Trans.,2008,42,5687—5697
    [13]Su Y.,Liu X.,Lei P.,Xu X.,Dong L.,Guo X.,Yan X.,Wang P.,Song S.,Feng J.,Zhang H.,Dalton Trans.,2016,45,11129—11136
    [14]Qian H.S.,Zhang Y.,Langmuir,2008,24,12123—12125
    [15]Fischer S.,Martín-Rodríguez R.,Fr9hlich B.,Krmer K.W.,Meijerink A.,Goldschmidt J.C.,J.Lumin.,2014,153,281—287
    [16]Amjad R.J.,Sahar M.R.,Ghoshal S.K.,Dousti M.R.,Riaz S.,Samavati A.R.,Jamaludin M.N.A.,Naseem S.,Chin.Phys.Lett.,2013,30,027301
    [17]Naduviledathu R.A.,Rinkel T.,Haase M.,Chem.Mater.,2014,26,5689—5694
    [18]Wang J.,Lu J.,Hocevar S.B.,Farias P.A.M.,Ogorevc B.,Anal.Chem.,2000,72,3218—3222
    [19]Monk K.A.,Sarapa D.,Mohan R.S.,Synth.Commun.,2000,30,3167—3170
    [20]Niu N.,He F.,Gai S.,Li C.,Zhang X.,Huang S.,Yang P.,J.Mater.Chem.,2012,22,21613—21623
    [21]Lei P.,Zhang P.,Yao S.,Song S.,Dong L.,Xu X.,Liu X.,Du K.,Feng J.,Zhang H.,Appl.Mater.Interfaces,2016,8,27490—27497
    [22]Lei P.,Zhang P.,Yuan Q.,Wang Z.,Dong L.,Song S.,Xu X.,Liu X.,Feng J.,Zhang H.,Appl.Mater.Interfaces,2015,7,26346—26354
    [23]Lei P.,An R.,Yao S.,Wang Q.,Dong L.,Xu X.,Du K.,Feng J.,Zhang H.,Adv.Mater.,2017,29,1700505
    [24]Lei P.,An R.,Zhai X.,Yao S.,Dong L.,Xu X.,Du K.,Zhang M.,Feng J.,Zhang H.,J.Mater.Chem.C,2017,5,9659—9665
    [25]Huang X.,Jiang L.,Xu Q.,Li X.,He A.,RSC Adv.,2017,7,41190—41203
    [26]Tian G.,Gu Z.,Zhou L.,Yin W.,Liu X.,Yan L.,Jin S.,Ren W.,Xing G.,Li S.,Zhao Y.,Adv.Mater.,2012,24,1226—1231
    [27]Zeng S.,Yi Z.,Lu W.,Qian C.,Wang H.,Rao L.,Zeng T.,Liu H.,Liu H.,Fei B.,Hao J.,Adv.Funct.Mater.,2014,24,4051—4059
    [28]Zhang K.M.,Zhao Y.P.,He F.Q.,Liu D.Q.,Chin.J.Chem.Phys.,2007,20,721
    [29]Shannon R.D.,Acta Cryst.,1976,A32,751
    [30]Li X.,Lu J.,Peng G.,Jin L.,Wei S.,J.Phys.Chem.Solids,2009,70,609—615
    [31]Chen D.,Yu Y.,Huang F.,Huang P.,Yang A.,Wang Y.,J.Am.Chem.Soc.,2010,132,9976—9978
    [32]Wang F.,Wang J.,Liu X.,Angew.Chem.,2010,122,7618—7622
    [33]Yu W.,Xu W.,Song H.,Zhang S.,Dalton Trans.,2014,43,6139—6147
    [34]Georgescu S.,Voiculescu A.M.,Matei C.,Stefan A.G.,Toma O.,Phys.B Condens.Matter,2013,413,55—58
    [35]Huang Z.,Gao H.,Mao Y.,RSC Adv.,2016,6,83321—83327
    [36]Song E.H.,Xiao F.,Ye S.,Zhang Q.Y.,INEC,2013,421—424
    [37]Wang S.F.,Gu F.,LüM.K.,Zhou G.J.,Ai Z.P.,Xu D.,Yuan D.R.,J.Cryst.Growth,2003,257,84—88