基于FY-3B/MWRI数据的青藏高原地区地表发射率反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Retrieval of land surface emissivity from FY-3B/MWRI data over the Qinghai-Tibetan Plateau
  • 作者:吴莹 ; 何灵莉 ; 钱博 ; 姜苏麟
  • 英文作者:WU Ying;HE Ling-li;QIAN Bo;JIANG Su-lin;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation,Nanjing University of Information Science and Technology;School of Atmospheric Physics, Nanjing University of Information Science and Technology;
  • 关键词:MWRI ; 地表发射率 ; 青藏高原
  • 英文关键词:Microwave Radiation Imager;;Land surface emissivity;;Qinghai-Tibetan Plateau
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室;南京信息工程大学大气物理学院;
  • 出版日期:2018-07-25 18:44
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.153
  • 基金:国家自然科学基金项目(41305033,41675028);; 江苏省基础研究计划-青年基金项目(BK20150911)共同资助
  • 语种:中文;
  • 页:DQWJ201901003
  • 页数:7
  • CN:01
  • ISSN:11-2982/P
  • 分类号:18-24
摘要
以青藏高原地区为研究区域,利用FY-3B/MWRI(Microwave Radiation Imager)一级亮温数据和NCEP(the National Centers for Environmental Prediction) FNL(Final)全球业务分析资料,通过简化的微波辐射传输方程反演了晴空大气条件下的地表微波发射率.进而根据IGBP(International Geosphere-Biosphere Program)陆表覆盖分类数据,进一步分析了青藏高原地区微波地表发射率的频谱和空间分布特征,并分析了反演误差的来源.结果表明:青藏高原地区微波地表发射率的空间分布、频谱特征都与地表覆盖类型分布特征高度吻合,呈现出西北部地表发射率极化差异大,东南部极化异差小的分布特征.本研究中地表发射率的反演误差主要来自降水像元判别方案、再分析资料的时空匹配.还需要进一步研究定量误差,以期提高反演精度,进而建立长时间序列的地表发射率数据库,为青藏高原地球物理参数的遥感反演提供数据支持.
        In this study, land surface microwave emissivity of Qinghai-Tibetan Plateau was first retrieved based on the simplified microwave radiative transfer equation from FY-3 B/MWRI(Microwave Radiation Imager) Level 1 brightness temperatures and NCEP(the National Centers for Environmental Prediction)FNL(Final)Operational Global Analysis data under clear atmospheric conditions. Then, the spectrum and the spatial distribution characteristics of the retrieved emissivity are analyzed based on the IGBP(International Geosphere-Biosphere Program)land cover classification data. And also, the sources of the retrieving errors are analyzed. The results show that the spatial distribution of the land surface emissivity was consistent with the type of land surface, with a large difference in the polarization of surface emissivity in the northwest and a smaller difference in the southeast of the Qinghai-Tibetan Plateau. The inversion error of surface emissivity in this study mainly comes from the precipitation pixel discrimination scheme and the time matching of reanalysis data. In order to improve the accuracy of inversion, and then establish a long time series of land surface emissivity database, which provides data support for the remote sensing inversion of the geophysical parameters of the Qinghai-Tibetan plateau, further studies of quantitative error are needed.
引文
Errico R M,Ohring G,Bauer P,et al. 2007. Assimilation of satellite cloud and precipitation observations in numerical weather prediction models: Introduction to the JAS Special Collection [J]. Journal of the Atmospheric Sciences,64(11): 3737-3741.
    Galantowicz J F,Moncet J L,Liang P,et al. 2011. Subsurface emission effects in AMSR-E measurements: Implications for land surface microwave emissivity retrieval [J]. Journal of Geophysical Research: Atmospheres,116 (D17),doi: 10.1029/2010JD015431.
    Gao C X,Li Z L,Qiu S,et al. 2014. An improved algorithm for retrieving land surface emissivity and temperature from MSG-2/SEVIRI data [J]. IEEE Transactions on Geoscience and Remote Sensing,52(6): 3175-3191.
    Grody N C. 1991. Classification of snow cover and precipitation using the special sensor microwave imager [J]. Journal of Geophysical Research: Atmospheres,96(D4): 7423-7435.
    Grody N C. 1983. Severe storm observations using the Microwave Sounding Unit [J]. Journal of Applied Meteorology,22(4): 609- 625.
    Gu S Y,Qiu H,Zhang W J. 2004. Retrieval of land surface microwave emissivity by using satellite-borne AMSU data [J]. Chinese Journal of Radio Science (in Chinese),19(4): 452- 457.谷松岩,邱红,张文建. 2004. 先进微波探测器资料反演地表微波辐射率试验[J]. 电波科学学报,19(4): 452- 457.
    He W Y,Chen H B. 2009. The characteristics of microwave emissivity over land of Chinese Jianghuai-Huanghuai region [J]. Remote Sensing Technology and Application (in Chinese),24(3): 297-303.何文英,陈洪滨. 2009. 中国江淮?黄淮地区陆面微波比辐射率的变化特征[J]. 遥感技术与应用,24(3): 297-303.
    He W Y,Chen H B,Sun Q,et al. 2011. The characteristics of microwave surface emissivity over Tibetan Plateau [J]. Remote Sensing Technology and Application (in Chinese),26(6): 735-741.何文英,陈洪滨,孙强,等. 2011. 青藏高原地表微波比辐射率的反演与分析[J]. 遥感技术与应用,26(6): 735-741.
    He W Y,Chen H B,Xuan Y J,et al. 2010. Field Measurements of the surface microwave emissivity for different surface types [J]. Progress in Geophysics (in Chinese),25(6): 1983-1993,doi: 10.3969/j.issn.1004-2903.2010.06.013.何文英,陈洪滨,宣越健,等. 2010. 几种地表微波比辐射率变化特征的地面观测 [J]. 地球物理学进展,25(6): 1983-1993,doi: 10.3969/j.issn.1004-2903.2010.06.013.
    Hong G,Heygster G,Kunzi K,et al. 2003. Retrieval of microwave surface emissivities at TMI frequencies in Shouxian [J]. Advances in Atmospheric Sciences,20(2): 253-259.
    Jones A S,Vonder Haar T H. 1997. Retrieval of microwave surface emittance over land using coincident microwave and infrared satellite measurements [J]. Journal of Geophysical Research: Atmospheres,102(D12): 13609-13626.
    Li Z L,Wu H,Wang N,et al. 2013. Land surface emissivity retrieval from satellite data [J]. International Journal of Remote Sensing,34 (9-10): 3084-3127,doi: 10.1080/01431161.2012.716540.
    Mao K B,Shi J C,Li Z L,et al. 2005. The land surface temperature and emissivity retrieved from the AMSR passive microwave data [J]. Remote Sensing for Land and Resources (in Chinese),17(3): 14-17.毛克彪,施建成,李召良,等. 2005. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感. 17(3): 14-17.
    Moncet J L,Liang P,Galantowicz J F,et al. 2011. Land surface microwave emissivities derived from AMSR-E and MODIS measurements with advanced quality control [J]. Journal of Geophysical Research: Atmospheres,116,D16,doi: 10.1029/2010JD015429.
    Pan G D,Wang C,Zhang W G,et al. 2003. Analysis of seasonal change of land cover characteristics with SSM/I Data in China [J]. Journal of Remote Sensing (in Chinese),7(6): 498-503.潘广东,王超,张卫国,等. 2003. SSM/I微波辐射计数据中国陆地覆盖特征季节变化分析[J]. 遥感学报,7(6): 498-503.
    Prigent,C,Liang P,Tian Y,et al. 2015. Evaluation of modeled microwave land surface emissivities with satellite-based estimates [J]. Journal of Geophysical Research: Atmosheres,120(7): 2706-2718,doi: 10.1002/2014JD021817.
    Prigent C,Rossow W B,Matthews E. 1997. Microwave land surface emissivities estimated from SSM/I observations [J]. Journal of Geophysical Research: Atmospheres,102(D18): 21867-21890.
    Prigent C,Wigneron J P,Rossow W B,et al. 2000. Frequency and angular variations of land surface microwave emissivities: Can we estimate SSM/T and AMSU emissivities from SSM/I emissivities? [J] IEEE Transactions on Geoscience and Remote Sensing,38(5): 2373-2386.
    Qian B,Lu Q F,Yang S Y,et al. 2016. Review on microwave land surface emissivity by satellite remote sensing [J]. Progress in Geophysics (in Chinese),31(3): 960-964,doi: 10.6038/pg20160304.钱博,陆其峰,杨素英,等. 2016. 卫星遥感微波地表发射率研究综述[J]. 地球物理学进展,31(3): 960-964,doi: 10.6038/pg20160304.
    Qiu Y B,Guo H D,Shi L J,et al. Global land surface emissivity dataset based on AMSR-E observations [J]. Remote Sensing Technology and Application (in Chinese),31(4): 809-819.邱玉宝,郭华东,石利娟,等. 2016. 基于AMSR-E的全球陆表被动微波发射率数据集[J]. 遥感技术与应用,31(4): 809-819.
    Qiu Y B,Shi J C,Hallikainen M T,et al. 2008. The AMSR-E instantaneous emissivity estimation and its correlation,frequency dependency analysis over different land covers [C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 8-11,Boston,Massachusetts,USA,Proceedings. DBLP,749-752.
    Ringerud S,Kummerow C D,Peters-Lidard C D. 2015. A Semi-Empirical Model for Computing Land Surface Emissivity in the Microwave Region [J]. IEEE Transactions on Geoscience & Remote Sensing,53(4): 1935-1946.
    Shi L J,Qiu Y B,Shi J C. 2013. Study of the microwave emissivity characteristics of vegetation over the Northern Hemisphere [J]. Spectroscopy and Spectral Analysis (in Chinese),33(5): 1157-1162.石利娟,邱玉宝,施建成. 2013. 北半球植被冬夏两季微波发射率特征分析[J]. 光谱学与光谱分析,33(5): 1157-1162.
    Tian Y,Peters-Lidard C D,Harrison K W,et al. 2012. Quantifying uncertainties in land-surface microwave emissivity retrievals [J]. IEEE Transactions on Geoscience & Remote Sensing,52(2): 829-840.
    Tian Y,Peters-Lidard C D,Harrison K W,et al. 2015. An examination of methods for estimating land surface microwave emissivity [J]. Journal of Geophysical Research: Atmosheres,120(21): 11114-11128,doi: 10.1002/2015JD023582.
    Wang R,Shi S W,Yan W,et al. 2014. Sea surface wind retrieval from polarimetric microwave radiometer in typhoon area [J]. Chinese Journal of Geophysics (in Chinese),57(3): 738-751,doi: 10.6038/cjg20140305王蕊,史顺文,严卫,等. 2014. 利用全极化微波辐射计资料反演台风境内海面风场[J]. 地球物理学报,57(3): 738-751,doi: 10.6038/cjg20140305.
    Wang Y Q,Shi J C,Liu Z H,et al. 2013. Retrieval algorithm for microwave surface emissivities based on multi-source,remote-sensing data: An assessment on the Qinghai-Tibet Plateau [J]. Science China: Earth Sciences (in Chinese),56(1): 93-101,doi: 10.1007/s11430- 012- 4501-5.王永前,施建成,刘志红,等. 2013. 基于AMSR-E的微波波段地表发射率反演——以青藏高原为例[J]. 中国科学:地球科学,(2): 271-279.
    Weng F,Yan B,Grody N C. 2001. A microwave land emissivity model [J]. Journal of Geophysical Research: Atmosheres,106(D17): 20115-20123.
    Weng F Z,Zhu T,Yan B H. 2007. Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain affected Radiances from microwave Observations for hurricane vortex analysis [J]. Journal of the Atmospheric Sciences,64(11): 3910-3925.
    Wilheit T,Kummerow C D,Ferraro R. 2003. NASDA rainfall algorithms for AMSR-E [J]. IEEE Transactions on Geoscience and Remote Sensing,41(2): 204-214.
    Wilke G D,Mcfarland M J. 1986. Correlations between Nimbus-7 Scanning Multichannel Microwave Radiometer data and an antecedent precipitation index [J]. Journal of Applied Meteorology,25(1986): 227-238.
    Wu Y,Weng F Z. 2014. Effects of soil texture on the retrieved microwave emissivity at the different frequencies of a desert area and its modeling [J]. Acta Meteorologica Sinica (in Chinese),72(4): 749-759.吴莹,翁富忠. 2014. 沙漠地区土壤质地对不同频点微波地表发射率反演和模拟的影响[J]. 气象学报,72(4): 749-759.
    Yan B H,Weng F Z. 2011. Effects of microwave desert surface emissivity on AMSU-A data assimilation [J]. IEEE Transactions on Geoscience and Remote Sensing,49(4): 1263-1276.
    Yang H,Weng F Z. 2011. Error sources in remote sensing of microwave land surface emissivity [J]. IEEE Transactions on Geoscience and Remote Sensing,49(9): 3437-3442.
    You R,Yang H,Lu N M. 2009. Stability analysis of microwave emissivity in Simao Yunnan using SSM/I data [J]. Journal of Remote Sensing (in Chinese),13(5): 894-900.游然,杨虎,卢乃锰. 2009. SSM/I 的云南思茅微波发射率的稳定性分析[J]. 遥感学报,13(5): 894-900.
    Zhang T,Zhang L X,Jiang L M,et al. 2012. City microwave emissivity extraction and characteristic analysis in China [J]. Journal of Remote Sensing (in Chinese),16(6): 1272-1288.张涛,张立新,蒋玲梅,等. 2012. 中国城市微波发射率提取与特征分析[J]. 遥感学报,16(6): 1272-1288.
    Zhang Y P,Jiang L M,Qiu Y B,et al. 2010. Study of the microwave emissivity characteristics over different land cover types [J]. Spectroscopy and Spectral Analysis (in Chinese),30(6): 1446-1451.张勇攀,蒋玲梅,邱玉宝,等. 2010. 不同地物类型微波发射率特征分析[J]. 光谱学与光谱分析,30(6): 1446-1451.
    Zou X L. 2012. Introduction to microwave imager radiance observations from polar-orbiting meteorological satellites [J]. Advances in Meteorological Science and Technology (in Chinese),2(3): 45-50.邹晓蕾. 2012. 极轨气象卫星微波成像仪资料[J]. 气象科技进展,02(3): 45-50.