硫酸化SnO_2/SPPESK复合质子交换膜的制备及燃料电池性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and fuel cell performance of sulfated SnO_2/SPPESK composite proton exchange membranes
  • 作者:甄栋兴 ; 唐帅 ; 陈木森 ; 万磊 ; 吴雪 ; 贺高红
  • 英文作者:ZHEN Dongxing;TANG Shuai;CHEN Musen;WAN Lei;WU Xuemei;HE Gaohong;State Key Laboratory of Fine Chemicals,R&D Center of Membrane Science and Technology,Dalian University of Technology;
  • 关键词:磺化聚芳醚砜酮 ; 硫酸化二氧化锡 ; 纳米粒子 ; 有机无机复合质子交换膜 ; 直接甲醇燃料电池
  • 英文关键词:sulfonated poly(phthalazinone ether sulfone ketone);;sulfated tin dioxide;;nanoparticles;;organic-inorganic composite proton exchange membrane;;direct methanol fuel cell
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:大连理工大学精细化工国家重点实验室膜科学与技术研究开发中心;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家自然科学基金(21476044,21406031);国家自然科学基金联合基金(U1663223);; 国家重点研究发展计划(2016YFB0101203);; 教育部长江学者奖励计划(T2012049);; 大连理工大学重大项目培育科研专题项目(DUT16TD19)
  • 语种:中文;
  • 页:HGJZ201901044
  • 页数:9
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:536-544
摘要
非氟聚合物磺化聚芳醚砜酮(SPPESK)具有甲醇渗透率低、化学、热稳定性高等优点,但其高的电导率需通过提高磺化度获得,导致膜因过度溶胀而失去尺寸稳定性。添加无机纳米颗粒可以有效提高膜性能,但因其表面缺少功能化基团,导致颗粒有机相容性差,阻醇性能和质子传导率不易同时提高。硫酸化改性的纳米颗粒因其表面具有酸性位点和硫酸基团,能够有效克服这一问题。本文制备表面硫酸化改性的SnO_2(SSnO_2)纳米颗粒并引入SPPESK基质制备有机无机复合质子交换膜。当SSnO_2含量不大于7.5%时,纳米颗粒具有良好的有机相容性,可均匀分散于聚合物基质。SSnO_2含量为7.5%时,80℃下复合膜吸水率(19.6%)比SPPESK原膜提高19%,接近Nafion115。颗粒诱导膜内离子簇的聚集扩大,降低了质子的传导阻力,质子传导率分别比SPPESK原膜和Nafion115膜提高48%和30%。同时,纳米颗粒增大了甲醇传递空间位阻,甲醇渗透率较SPPESK原膜和Nafion115膜分别降低46%和71%。直接甲醇燃料电池0.5V处功率密度分别比SPPESK原膜和Nafion115膜高205%和50%。
        Sulfonated poly(phthalazinone ether sulfone ketone)(SPPESK), a novel non-fluorinated polymer, possesses the advantages of low methanol permeability, high chemical and thermal stability, butthe obtained high conductivity needs high degree of sulfonation, resulting in the loss of membranedimensional stability due to the excessive swelling. The introduction of inorganic nanoparticles caneffectively improve the membrane performance. However, due to the lack of functional groups on thesurface, the inorganic particles often show poor organic compatibility. Besides, the membrane's anti-methanol permeability and proton conductivity cannot be easily improved simultaneously. The sulfatednanoparticles with acidic sites and sulfate groups on the surface can effectively overcome this problem.The SPPESK based composite proton exchange membranes were prepared by doping sulfated SnO_2(SSnO_2) nanoparticles. The SSnO_2 showed good organic compatibility when the content was not more than7.5%. Compared with the pristine membrane, the composite membrane containing 7.5% SSnO_2 showedhigher water uptake(improved by 19%) at 80℃ in, and the swelling ratio(19.6%) was close to that of Nafion115. The nanoparticles induced the aggregation and expansion of the ion clusters in the membrane,which led to the low-resistance transfer of protons. Compared with pristine SPPESK and Nafion115, the composite membrane showed conductivity increases of 48% and 30% at 80℃, methanol permeability reductions of 46% and 71% and power density enhancements at 0.5V of direct methanol fuel cell of 205% and 50%, respectively.
引文
[1] WU Q, WANG H, LU S, et al. Novel methanol-blocking protonexchange membrane achieved via self-anchoring phosphotungsticacid into chitosan membrane with submicro-pores[J]. Journal ofMembrane Science, 2016, 500:203-210.
    [2] ERCELIK M, OZDEN A, DEVRIM Y, et al. Investigation ofNafion based composite membranes on the performance of DMFCs[J]. International Journal of Hydrogen Energy, 2017, 42:2658-2668.
    [3]孙媛媛,屈树国,李建隆.质子交换膜燃料电池用磺化聚醚醚酮膜的研究进展[J].化工进展,2016,35(9):2850-2860.SUN Y Y,QU S G,LI J L. Research progress of the sulfonatedpoly(ether ether ketone)s membranes for proton exchangemembrane fuel cell[J]. Chemical Industry and EngineeringProgress, 2016, 35(9):2850-2860.
    [4] GIFFIN G A, GALBIATI S, WALTER M, et al. Interplay betweenstructure and properties in acid-base blend PBI-basedmembranes for HT-PEM fuel cells[J]. Journal of MembraneScience, 2017, 535:122-131.
    [5] LADE H, KUMAR V, ARTHANAREESWARAN G, et al.Sulfonated poly(arylene ether sulfone)nanocomposite electrolytemembrane for fuel cell applications:a review[J]. InternationalJournal of Hydrogen Energy, 2017, 42:1063-1074.
    [6] ZHANG S, HE G, GONG X, et al. Electrospun nanofiber enhanced sulfonated poly(phthalazinone ether sulfone ketone)composite proton exchange membranes[J]. Journal of MembraneScience, 2015, 493:58-65.
    [7] PAN J, WU B, WU L, et al. Proton exchange membrane fromtetrazole-based poly(phthalazinone ether sulfone ketone)for high-temperature fuel cells[J]. International Journal of HydrogenEnergy, 2016, 41:12337-12346.
    [8]孙园园,吴雪梅,甄栋兴,等.静电层层自组装改性SPPESK/PWA质子交换膜[J].化工进展,2015,32(12):4285-4289.SUN Y Y,WU X M,ZHEN D X,et al.Modification of SPPESK/PWA proton exchange membrane by layer-by-layer self-assembly[J]. Chemical Industry and Engineering Progress, 2015, 32(12):4285-4289.
    [9] WANG S, DONG F, LI Z, et al. Preparation and properties ofsulfonated poly(phthalazinone ether sulfone ketone)/tungsten oxidecomposite membranes[J]. Asia-Pacific Journal of ChemicalEngineering, 2012, 7:528-533.
    [10] GONG X, HE G, WU Y, et al. Aligned electrospun nanofibers asproton conductive channels through thickness of sulfonatedpoly(phthalazinone ether sulfone ketone)proton exchangemembranes[J]. Journal of Power Sources, 2017, 358:134-141.
    [11] HU Z, HE G, GU S, et al. Montmorillonite-reinforced sulfonatedpoly(phthalazinone ether sulfone ketone)nanocomposite protonexchange membranes for direct methanol fuel cells[J]. Journal ofApplied Polymer Science, 2014, 131:39852.
    [12] GU S, HE G, WU X, et al. Synthesis and characteristics ofsulfonated poly(phthalazinone ether sulfone ketone)(SPPESK)fordirect methanol fuel cell(DMFC)[J]. Journal of Membrane Science,2006, 281:121-129.
    [13] LEE W, GIL S C, KIM H, et al. Partially sulfonated poly(aryleneether sulfone)/organically modified metal oxide nanoparticlecomposite membranes for proton exchange membrane for directmethanol fuel cell[J]. Composites Science and Technology, 2016,129:101-107.
    [14] SU Y H, LIU Y L, SUN Y M, et al. Using silica nanoparticles formodifying sulfonated poly(phthalazinone ether ketone)membranefor direct methanol fuel cell:a significant improvement on cellperformance[J]. Journal of Power Sources, 2006, 155:111-117.
    [15] ZHAO S, REN J, WANG Y, et al. Electric field processing tocontrol the structure of titanium oxide/sulfonated poly(ether etherketone)hybrid proton exchange membranes[J]. Journal ofMembrane Science, 2013, 437:65-71.
    [16] PANDEY R P, SHUKLA G, MANOHAR M, et al. Graphene oxidebased nanohybrid proton exchange membranes for fuel cellapplications:an overview[J]. Advances in Colloid and InterfaceScience, 2017, 240:15-30.
    [17] WANG M, LIU G, TIAN Z, et al. Microstructure-modified protonexchange membranes for high-performance direct methanol fuelcells[J]. Energy Conversion and Management, 2017, 148:753-758.
    [18] MOSSAYEBI Z, SARIRICHI T, ROWSHANZAMIR S, et al.Investigation and optimization of physicochemical properties ofsulfated zirconia/sulfonated poly(ether ether ketone)nanocompositemembranes for medium temperature proton exchange membranefuel cells[J]. International Journal of Hydrogen Energy, 2016, 41:12293-12306.
    [19] PARTHIBAN V, AKULA S, PEERA S G, et al. Proton conducting Nafion-sulfonated graphene hybrid membranes for directmethanol fuel cells with reduced methanol crossover[J]. Energy&Fuels, 2016, 30:725-734.
    [20] KIM D J, HWANG H Y, NAM S Y, et al. Characterization of acomposite membrane based on SPAES/sulfonated montmorillonitefor DMFC application[J]. Macromolecular Research, 2012, 20:21-29.
    [21] FURUTA S, MATSUHASHI H, ARATA K. Catalytic action ofsulfated tin oxide for etherification and esterification incomparison with sulfated zirconia[J]. Applied Catalysis A:General, 2004, 269:187-191.
    [22] CHEN F, MECHERI B, D’EPIFANIO A, et al. Development ofNafion/tin oxide composite MEA for DMFC applications[J]. Fuel Cells, 2010, 10:790-797.
    [23] SARAVANAN K, TYAGI B, BAJAJ H C. Nano-crystalline,mesoporous aerogel sulfated zirconia as an efficient catalyst foresterification of stearic acid with methanol[J]. Applied Catalysis B:Environmental, 2016, 192:161-170.
    [24] SCIPIONI R, GAZZOLI D, TEOCOLI F, et al. Preparation andcharacterization of nanocomposite polymer membranes containingfunctionalized SnO2additives[J]. Membranes, 2014, 4(1):123-142.
    [25] DU L, YAN X, HE G, et al. SPEEK proton exchange membranesmodified with silica sulfuric acid nanoparticles[J]. InternationalJournal of Hydrogen Energy, 2012, 37:11853-11861.