基于控制硬件在环的风电机组阻抗测量及影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impedance Measurement and Influence Factors Analysis for Wind Turbines Based on Control-hardware-in-the-loop
  • 作者:李光辉 ; 王伟胜 ; 刘纯 ; 何国庆 ; 叶俭 ; 孙建
  • 英文作者:LI Guanghui;WANG Weisheng;LIU Chun;HE Guoqing;YE Jian;SUN Jian;State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems(China Electric Power Research Institute);National Power Dispatching and Control Center;Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute;
  • 关键词:风电并网 ; 振荡 ; 阻抗测量 ; 控制硬件在环
  • 英文关键词:wind power gird-connecting;;resonance;;impedance measurement;;control-hardware-in-the-loop
  • 中文刊名:DWJS
  • 英文刊名:Power System Technology
  • 机构:新能源与储能运行控制国家重点实验室(中国电力科学研究院有限公司);国家电力调度控制中心;伦斯勒理工学院电气计算机和系统工程系美国;
  • 出版日期:2019-05-05
  • 出版单位:电网技术
  • 年:2019
  • 期:v.43;No.426
  • 基金:国家电网公司科技项目(NYB17201800102)~~
  • 语种:中文;
  • 页:DWJS201905018
  • 页数:8
  • CN:05
  • ISSN:11-2410/TM
  • 分类号:139-146
摘要
随着局部地区风电渗透率的不断提高,风力发电振荡脱网事故频发,阻抗建模成为分析大规模风电并网振荡问题的一种有效方法。控制硬件在环仿真作为获取风电机组阻抗特性的有效方式,其阻抗测量结果受仿真平台性能参数的影响。研究了基于控制硬件在环实时仿真的风电机组阻抗测量建模方法,定量分析了对于测量精度影响较大的因素。首先介绍了控制硬件在环实时仿真建模方法,搭建了风电机组控制硬件在环实时仿真实验平台,给出了基于控制硬件在环考虑频率耦合的阻抗测量方法;然后建立了考虑仿真步长、接口延时、开关模型等效参数的阻抗测量数学模型,计算分析了控制硬件在环实时仿真模型对阻抗在不同频段幅值与相位精度的影响;最后针对某双馈风电场次/超同步振荡案例,开展了基于控制硬件在环实时仿真的阻抗测量以及基于控制参数修正的阻抗重塑,有效解决了现场振荡问题。验证了控制硬件在环实时仿真为开展风电机组阻抗测量和分析提供一种有效研究与实验手段。
        Impedance modeling has become a useful method to analyze large-scale grid-connecting wind power oscillation issues which are observed frequently with the continuous increase of the wind power penetration. Controlhardware-in-the-loop(CHIL) real-time(RT) simulation is one of the effective ways to obtain the impedance characteristics of wind turbines, and its impedance measurement results are affected by the performance and parameters of the simulation platform. In this paper, the sequence impedance measurement method of wind turbines based on CHIL simulation is studied, and the factors that influence the measurement accuracy are analyzed quantitatively. Firstly, the CHIL RT simulation modeling and the built wind turbines CHIL RT simulation platform are proposed, and the impedance measurement method considering the frequency coupling is described. After that, the influence of CHIL RT simulation modeling on impedance amplitude and phase accuracy in different frequency bands is calculated and analyzed, based on the impedance scanning mathematic model considering the simulation step, I/O interface delay and switch equivalent model. Finally, the DFIG impedance measurement and reshaping are carried out based on the CHIL RT simulation, solving the practical wind farm oscillation problem effectively. It is verified that CHIL RT simulation provides an effective research method for WT impedance measurement and analysis.
引文
[1]IEEE Subsynchronous Resonance Working Group.Terms,definitions and symbols for subsynchronous oscillations[J].IEEE Transactions on Power Apparatus and Systems,1985,104(6):1326-1333.
    [2]Adams J,Pappu V A,Dixit A.Ercot experience screening for sub-synchronous control interaction in the vicinity of series capacitor banks[C]//IEEE Power and Energy Society General Meeting.San Diego:IEEE,2012:1-5.
    [3]Adams J,Carter C,Huang S H.ERCOT experience with subsynchronous control interaction and proposed remediation[C]//Transmission and Distribution Conference and Exposition,Orlando.IEEE,2012:1-5.
    [4]李明节,于钊,许涛,等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术,2017,41(4):1035-1042.Li Mingjie,Yu Zhao,Xu Tao,et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power System Technology,2017,41(4):1035-1042(in Chinese).
    [5]谢小荣,王路平,贺静波,等.电力系统次同步谐振/振荡的形态分析[J].电网技术,2017,41(4):1043-1049.Xie Xiaorong,Wang Luping,He Jingbo,et al.Analysis of subsynchronous resonance/oscillation types in power systems[J].Power System Technology,2017,41(4):1043-1049(in Chinese).
    [6]张冲,王伟胜,何国庆,等.基于序阻抗的直驱风电场次同步振荡分析与锁相环参数优化设计[J].中国电机工程学报,2017,37(23):6757-6767.Zhang Chong,Wang Weisheng,He Guoqing,et al.Analysis of sub-synchronous oscillation of full-converter wind farm based on sequence impedance and an optimized design method for PLLparameters[J].Proceedings of the CSEE,2017,37(23):6757-6767(in Chinese).
    [7]王伟胜,张冲,何国庆,等.大规模风电场并网系统次同步振荡研究综述[J].电网技术,2017,41(4):1050-1060.Wang Weisheng,Zhang Chong,He Guoqing,et al.Overview of research on subsynchronous oscillations in large-scale wind farm integrated system[J].Power System Technology,2017,41(4):1050-1060(in Chinese).
    [8]王亮,谢小荣,姜齐荣,等.大规模双馈风电场次同步谐振的分析与抑制[J].电力系统自动化,2014,38(22):26-31.Wang Liang,Xie Xiaorong,Jiang Qirong,et al.Analysis and mitigation of SSR problem in large-scale wind farms with doubly-fed wind turbines[J].Automation of Electric Power Systems,2014,38(22):26-31(in Chinese).
    [9]陈新,王赟程,龚春英,等.采用阻抗分析方法的并网逆变器稳定性研究综述[J].中国电机工程学报,2018,38(7):2082-2096.Chen Xin,Wang Yuncheng,Gong Chunyinget al.Overview of stability research for grid-connected inverters based on impedance analysis method[J].Proceedings of the CSEE,2018,38(7):2082-2096(in Chinese).
    [10]Xu Yunyang,Nian Heng,Wang Tao,et al.Frequency coupling characteristic modeling and stability analysis of doubly fed induction generator[J].IEEE Transactions on Energy Conversion,2018,33(3):1475-1486.
    [11]Sun Jian.Impedance-based stability criterion for grid-connected inverters[J].IEEE Transactions on Power Electronics,2011,26(11):3075-3078.
    [12]Sun Jian.Modeling and mitigation of harmonics and harmonic resonance involving wind turbines[C]//Proc.12th Wind Integration Workshop,London,UK,2013.
    [13]Cespedes M,Sun Jian.Impedance modeling and analysis of grid connected voltage-source converters[J].IEEE Transactions on Power Electronics,2014,29(3):1254-1261.
    [14]年珩,徐韵扬,陈亮,等.并网逆变器频率耦合特性建模及系统稳定性分析[J].中国电机工程学报,2019,39(5):1421-1431.Nian Heng,Xu Yunyang,Chen Liang,et al.Frequency coupling characteristic modeling of grid-connected inverter and system stability analysis[J].Proceedings of the CSEE,2019,39(5):1421-1431(in Chinese).
    [15]Vieto I,Sun Jian.Sequence impedance modeling and analysis of type-III wind turbines[J].IEEE Transactions on Energy Conversion,2016,PP(99):1-1.
    [16]王赟程,陈新,张旸,等.基于谐波线性化的三相LCL型并网逆变器正负序阻抗建模分析[J].中国电机工程学报,2016,36(21):5890-5898.Wang Yuncheng,Chen Xin,Zhang Yang,et al.Analysis of positivesequence and negative-sequence impedance modeling of three-phase LCL-type grid-connected inverters based on harmonic linearization[J].Proceedings of the CSEE,2016,36(21):5890-5898(in Chinese).
    [17]Li Guanghui,Sun Jian.Control hardware-in-the-loop simulation for turbine impedance modeling and verification[C]//Proceedings of the16th Wind Integration Workshop.Berlin,Germany:IEEE,2017.
    [18]Pokharel M,Ghosh A,Ho C N M.Small-signal modelling and design validation of pv-controllers with INC-MPPT using CHIL[J].IEEETransactions on Energy Conversion.doi:10.1109/TEC.2018.2874563.
    [19]Mo Ran,Steurer M,Li Hui.Controller hardware-in-the-loop(CHIL)simulation of a multi-functional energy storage system based on modular multilevel DC/DC converter(M2DC)for MVDC grid[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference(IPEMC-ECCE Asia),Hefei,2016:1980-1984.
    [20]陆臻业,邹毅军,王佳,等.一种基于FPGA的高速电力电子实时仿真方法研究[J].电气自动化,2016,38(5):18-21.Lu Zhenye,Zou Yijun,Wang Jia,et al.A research of high-speed power electronics real-time simulation method based on FPGA[J].Electrical Automation,2016,38(5):18-21(in Chinese).
    [21]Yepes,Alejandro G,Freijedo,et al.Effects of discretization methods on the performance of resonant controllers[J].IEEE Transactions on Power Electronics,2010,25(7):1692-1712.
    [22]Bachir T O,Dufour C,Bélanger J,et al.A fully automated reconfigurable calculation engine dedicated to the real-time simulation of high switching frequency power electronic circuits[J].Mathematics&Computers in Simulation,2012,91(3):167-177.
    [23]Dufour C,Cense S,Bélanger J.An induction machine and power electronic test system on a field-programmable gate array[J].Mathematics&Computers in Simulation,2016(130):112-123.
    [24]Pejovic P,Maksimovic D.A method for fast time-domain simulation of networks with switches[J].IEEE Transactions on Power Electronics,1994,9(4):340-348.