钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells
  • 作者:陈俊帆 ; 任慧志 ; 侯福华 ; 周忠信 ; 任千尚 ; 张德坤 ; 魏长春 ; 张晓丹 ; 侯国付 ; 赵颖
  • 英文作者:Chen Jun-Fan;Ren Hui-Zhi;Hou Fu-Hua;Zhou Zhong-Xin;Ren Qian-Shang;Zhang De-Kun;Wei Chang-Chun;Zhang Xiao-Dan;Hou Guo-Fu;Zhao Ying;Institute of Photoelectronics Thin Film Devices and Technology of Nankai University;Key Laboratory of Photoelectronics Thin Film Devices and Technology of Tianjin;Engineering Center of Thin Film Photoelectronics Technology of Ministry of Education;Sino-Euro Joint Research Center for Photovoltaic Power Generation of Tianjin;
  • 关键词:a-Si/c-Si异质结 ; 界面钝化 ; 少子寿命 ; 钙钛矿/硅异质结叠层太阳电池
  • 英文关键词:a-Si/c-Si heterojunction;;interface passivation;;minority lifetime;;perovskite/silicon heterojunction tandem solar cell
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南开大学光电子薄膜器件与技术研究所;天津市光电子薄膜器件与技术重点实验室;薄膜光电子技术教育部工程研究中心;天津市中欧太阳能光伏发电技术联合研究中心;
  • 出版日期:2019-01-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:科技部国际合作项目(批准号:2014DFE60170);; 国家自然科学基金(批准号:61474065,61674084,61474066);; 高等学校学科创新引智计划(111计划)(批准号:B16027);; 光学信息技术科学教育部重点实验室开放基金(批准号:2017KFKT015);; 中央高校基本科研业务费资助的课题~~
  • 语种:中文;
  • 页:WLXB201902028
  • 页数:11
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:239-249
摘要
最近,旋涂法制备的钙钛矿/平面硅异质结高效叠层太阳电池引起人们广泛关注,主要原因是相比于绒面硅衬底制备的钙钛矿/硅叠层太阳电池,其制备工艺简单、制备成本低且效率高.对于平面a-Si:H/c-Si异质结电池, a-Si:H/c-Si界面的良好钝化是获得高转换效率的关键,进而决定了钙钛矿/硅异质结叠层太阳电池的性能.本文主要从硅片表面处理、a-Si:H钝化层和P型发射极等方面展开研究,通过对硅片表面的氢氟酸(HF)浸泡时间和氢等离子体预处理气体流量、a-Si:H钝化层沉积参数、钝化层与P型发射极(I/P)界面富氢等离子体处理的综合调控,获得了相应的优化工艺参数.对比研究了p-a-Si:H和p-nc-Si:H两种缓冲层材料对I/P界面的影响,其中高电导、宽带隙的p-nc-Si:H缓冲层既能够降低I/P界面的缺陷态,又可以增强P型发射层的暗电导率,提高了前表面场效应钝化效果.通过上述优化,制备出最佳的P-type emitter layer/aSi:H(i)/c-Si/a-Si:H(i)/N-type layer (inip)结构样品的少子寿命与implied-Voc分别达到2855μs和709 mV,表现出良好的钝化效果.应用于平面a-Si:H/c-Si异质结太阳电池,转换效率达到18.76%,其中开路电压达到681.5 mV,相对于未优化的电池提升了34.3 mV.将上述平面a-Si:H/c-Si异质结太阳电池作为底电池,对应的钙钛矿/硅异质结叠层太阳电池的开路电压达到1780 mV,转换效率达到21.24%,证明了上述工艺优化能够有效地改善叠层太阳电池中的硅异质结底电池的钝化及电池性能.
        Recently, the monolithic spin-coating perovskite/planar silicon heterojunction tandem solar cells with high performance have attracted attention mainly due to simple fabrication, low preparation cost and high efficiency,especially compared with fully textured multi-junction perovskite/silicon tandem device. As is well known, the excellent passivation of a-Si:H/c-Si interface is the key to achieving a high-efficiency planar silicon heterojunction solar cell, which further improves the performance of the corresponding tandem cell. Therefore,we investigate the elements affecting a-Si:H/c-Si interface passivation, including the c-Si surface treatment technique, a-Si:H passivation layer and P-type emitter layer and so on. In these experiments, we adjust the immersed time of diluent hydrofluoric acid and pre-deposited hydrogen plasma with different gas mixture flows.Also, the suitable deposition parameters of intrinsic a-Si:H passivation layer are regulated by varying hydrogen dilution and time, and variously slight silane content is embedded into i-a-Si:H/P-type(I/P) emitter interface by hydrogen-rich plasma treating which is for acquiring optimal experimental processing conditions to promote the chemical passivation. In addition, the p-a-Si:H and p-nc-Si:H are comparatively studied as buffer layers to further improve the I/P interface passivation by varying the hydrogen dilution in the gas mixture during deposition. It can be found that p-nc-Si:H buffer layer with high conductivity and wide bandgap can not only reduce the defect density at the I/P interface, but also increase the conductivity of P-type emitter, which further improves the field passivation effect. By the above-mentioned optimization, the highest minority carrier lifetime and implied open-circuit voltage(i Voc) of the structure of P-type emitter/a-Si:H(i)/c-Si/a-Si:H(i)/Ntype layer(inip) sample can respectively reach 2855 μs and 709 mV, which demonstrates authentically outstanding passivation performance. An efficiency of 18.76% can be obtained for the planar a-Si/c-Si heterojunction solar cell with a Voc of 681.5 mV, which is 34.3 mV higher than that of the reference device.Regarding the optimized planar a-Si:H/c-Si heterojunction solar cell as the bottom cell, we also obtain an efficiency of 21.24% for perovskite/silicon heterojunction tandem solar cell with an open-circuit voltage of 1780 mV,which proves that the above strategies are very effective for improving the passivation optimization and performance of bottom cell in the tandem device.
引文
[1] Jia X P 2011 Power Technology 35 127(in Chinese)[贾旭平2011电源技术35 127]
    [2] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K,Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H,Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37
    [3] Kerr M J, Cuevas A, Campbell P 2003 Prog. Photovoltaics Res. Appl. 11 97
    [4] Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovoltaics3 1184
    [5] Kurtz S, Geisz J 2010 Opt. Express 18 A73
    [6] Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E,Wyrsch N, Kroll E, Droz C, Bailat J 2004 Prog. Photovoltaics Res. Appl. 12 113
    [7] Jeon N J, Na H, Jung E H, Yang T Y, Lee Y G, Kim G, Shin H W, Seok S, Lee J, Seo J 2018 Nat. Energy 3 682
    [8] Lal N N, Dkhissi Y, Li W, Hou Q C, Cheng Y B, Bach U2017 Adv. Energy Mater. 7 1602761
    [9] Filipic M, Loper P, Niesen B, Wolf S D, Krc J, Ballif C,Topic M 2015 Opt. Express 23 A263
    [10] Mailoa J P, Bailie C D, Johlin E C, Johlin, Hoke E T, Akey A J, Nguyen W H, McGehee M D, Buonassisi T 2015 Appl.Phys. Lett. 106 121105
    [11] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L,Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016Energy Environ. Sci. 9 81
    [12] Werner J, Weng C H, Walter A, Fesquet L, Seif J P, Wolf S D, Niesen B, Ballif C 2015 J. Phys. Chem. Lett. 7 161
    [13] Ding K, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi RRL 6 193
    [14] Zhang H, Nakada K, Miyajima S, Konagai M 2015 Phys.Status Solidi RRL 9 225
    [15] Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A, Kittisontirak S, Chinnavornrungsee P, Phatthanakun R, Sriprapha K 2017 Thin Solid Films 628107
    [16] Wang W J, Li H L, Zhou C L, Zhao L 2014 Technology for Manufacturing Crystalline Silicon Solar Cells(Beijing:China Machine Press)p90(in Chinese)[王文静,李海玲,周春兰,赵雷2014晶体硅太阳电池制造技术(北京:机械工业出版社)第90页]
    [17] Zhao J, Wang A, Green M A 1999 Prog. Photovoltaics Res.Appl. 7 471
    [18] Kerr M J, Cuevas A 2002 Semicond. Sci. Technol. 17 166
    [19] Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers H F W, Wolf S D, Beaucarne G 2006 Sol. Energy Mater. Sol. Cells90 3438
    [20] Hoex B, Heil S B S, Langereis E, Sanden M C M V D,Kessels W M M 2006 Appl. Phys. Lett. 89 042112
    [21] Fuhs W, Niemann K, Stuke J 1974 AIP Conf. Proc. 20 345
    [22] Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S, Okamoto H 1983 Appl. Phys. Lett. 43 644
    [23] Ren Q S, Li S Z, Zhu S J, Ren H Z, Yao X, Wei C C, Yan B J, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 185124
    [24] Shockley W, Read Jr W T 1952 Phys. Rev. 87 835
    [25] Hall R N 1952 Phys. Rev. 87 387
    [26] Sproul A B 1994 J. Appl. Phys. 76 2851
    [27] Jensen N,Rau U,Hausner R M, Uppal S, Oberbeck L,Bergman R B, Werner J H 2000 J. Appl. Phys. 87 2639
    [28] Yang J, Chen J H, Shen Y J, Chen J W, Xu Y, Mai Y H2017 Acta Energiae Solaris Sin. 1 201(in Chinese)[杨静,陈剑辉,沈艳娇,陈静伟,许颖,麦耀华2017太阳能学报38 201]
    [29] Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells(Beijin:Science Press)pp130-208(in Chinese)[沈文忠,李正平2014硅基异质结太阳电池物理与器件(北京:科学出版社)第130—208页]
    [30] Wang T H, Iwaniczko E, Page M R, Wang Q, Levi D H, Yan Y, Xu Y, Branz H M 2005 MRS Online Proceedings Library Archive. 862 183
    [31] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y,Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J.Photovoltaics 4 96
    [32] Wang F Y 2016 Ph.D. Dissertation(Tianjin:Nankai University)(in Chinese)[王奉友2016博士学位论文(天津:南开大学)]
    [33] Garcia-Belmonte G, Garcia-Canadas J, Mora-Sero I, Bisquert J, Voz C, Puigdollers J, Alcubilla R 2006 Thin Solid Films514 254
    [34] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118
    [35] Meng F Y, Shen L L, Shi J H, Zhang L P, Liu J N, Liu Y C,Liu Z X 2015 Appl. Phys. Lett. 107 96
    [36] Cuony P, Alexander D T, Perez-Wurfl I, Despeisse M,Bugnon G, Boccard M, Soderstrom T, Hessler-Wyser A,Hebert C, Ballif C 2012 Adv. Mater. 24 1182
    [37] Ding K, Aeberhard U, Smirnov V, Hollander B, Finger F,Rau U 2013 Jpn. J. Appl. Phys. 52 122304
    [38] Wang L G, Wang F, Zhang X D, Wang N, Jiang Y J, Hao Q Y, Zhao Y 2014 J. Power Sources 268 619
    [39] Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M, Matsuda A 2006 Thin Solid Films 502 306
    [40] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature418 62
    [41] Wang F Y, Zhang X D, Wang L G, Jiang Y J, Wei C C, Sun J, Zhao Y 2014 ACS Appl. Mater. Interfaces 6 15098
    [42] Wang F Y, Zhang X D, Wang L G, Fang J, Wei C C, Chen X L, Wang G C, Zhao Y 2014 Sol. Energy 108 308
    [43] Zhang Q F, Zhu M F, Liu F Z, Zhou Y Q 2007 J. Mater.Sci.-Mater. Electron. 18 33
    [44] Zhang X D, Ren Q S, Li S Z, Ren H Z, Wei C C, Hou G F,Xu S Z, Zhao Y 2017 Patent 201710878335.7
    [45] Fujiwara H, Kondo M 2007 J. Appl. Phys. 101 054516
    [46] Jiang Y J, Zhang X D, Wang F Y, Wei C C, Zhao Y 2014RSC Adv. 4 29794
    [47] Wang F Y, Du R C, Ren Q S, Wei C C, Zhao Y, Zhang X D2017 J. Mater. Chem.5 1751
    [48] Qiao Z, Xie X J, Hao Q Y, Wen D, Xue J M, Liu C C 2015Appl. Surf. Sci. 324 152
    [49] Descoeudres A, Barraud L, de Wolf S, Strahm B, Lachenal D,Guerin C, Holman Z C, Zicarelli F, Demaurex B, Seif J,Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506
    [50] Yan B, Yue G, Yang J, Guha S, Williamson D L, Han D X,Jiang C S 2004 Appl. Phys. Lett. 85 1955
    [51] Ma J, Ni J, Zhang J J, Liu Q, Hou G F, Chen X L, Zhang X D, Geng X H, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 120635