K_3V_5O_(14)的合成及光催化性能和吸附性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis, Photocatalytic Activity and Adsorption Performance of K_3V_5O_(14)
  • 作者:李雅明 ; 李艳军 ; 张江 ; 丛野 ; 崔正威 ; 袁观明 ; 董志军 ; 邹涛 ; 李轩科
  • 英文作者:LI Yaming;LI Yanjun;ZHANG Jiang;CONG Ye;CUI Zhengwei;YUAN Guanming;DONG Zhijun;ZOU Tao;LI Xuanke;The Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology;The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology;
  • 关键词:五钒酸三钾(K_3V_5O_(14)) ; 降解率 ; 吸附率 ; 可见光催化活性 ; 吸附性能
  • 英文关键词:tripotassium phyllo-pentavanadate(K_3V_5O_(14));;degradation rate;;adsorption rate;;photocatalytic activity;;adsorption performance
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:武汉科技大学化学与化工学院湖北省煤转化与新型炭材料重点实验室;武汉科技大学省部共建耐火材料与冶金国家重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(21301132;51402221;51472186;51372177);; 国家留学基金(201708420019);; 教育部高等学校博士学科点专项科研基金(20134219120002);; 湖北省教育厅项目(Q20151109)~~
  • 语种:中文;
  • 页:CLDB201912003
  • 页数:6
  • CN:12
  • ISSN:50-1078/TB
  • 分类号:11-16
摘要
采用固相合成法制备出K_3V_5O_(14),利用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征了其结构和形貌。研究了反应温度和反应时间对K_3V_5O_(14)的结构、形貌和紫外可见吸收光谱的影响。探讨了材料的光催化性能和吸附性能,结果表明:在光催化性能测试中,具有层状结构的K_3V_5O_(14)对亚甲基蓝(MB)的光降解作用较弱,75 min内降解率低于10%;但K_3V_5O_(14)对亚甲基蓝染料表现出较高的选择性及吸附性能,其最佳投入量为0.5 g·L~(-1),在45 min时对亚甲基蓝的吸附率可达84.46%;吸附动力学拟合结果显示,K_3V_5O_(14)对亚甲基蓝的吸附过程满足准二级吸附动力学,最大吸附容量为75.19 mg·g~(-1)。
        K _3V_5O_(14) was prepared via solid phase method and characterized by powder X-ray diffraction(PXRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The influences of reaction temperatures and times for the structure, morphology and UV-Vis diffuse reflectance spectroscope of K_3V_5O_(14) were studied. The photocatalytic activity and adsorption performance were tested in details. The results show the photocatalytic activity of K_3V_5O_(14) with layer structure is weak by the degradation of methylene blue(MB) under visible light and the degradation rate is lower than 10% in 75 min. However, the adsorption performance is higher and MB is selected and adsorbed from cationic dyes including MB, methyl orange and Rhodamine B. The adsorption rate is 84.46% at 45 min when the optimal dosage of adsorbent is 0.5 g·L~(-1). The adsorption kinetics follows the pseudo-second-order kinetic models and the maximum adsorption capacity is 75.19 mg·g~(-1).
引文
1 Annadurai G,Juang R S,Leed J.Journal of Hazadous Materials,2002,92(3),263.
    2 Lu Z Y,Shen L L,Zhang Q X.Industrial Water Treatment,2004,24(3),12(in Chinese).陆朝阳,沈莉莉,张全兴.工业水处理,2004,24(3),12.
    3 Fu W,Wang L,Huang J Z.Materials Review,2011,25(s2),54 (in Chinese).付文,王丽,黄军左.材料导报,2011,25(专辑18),54.
    4 Tang J W,Zou Z G,Ye J H,et al.Catalysis Letters,2014,92(1),53.
    5 Zou B,Yang T,Zhang Y X,et al.Journal of Synthetic Crystals,2014,43(6),1444.邹斌,杨添,张羽溪,等.人工晶体学报,2014,43(6),1444.
    6 Miao Y,Yin H B,Peng L,et al.RSC Advances,2016,6,13498.
    7 Wang D J,Shen H D,Guo L,et al.New Journal of Chemistry,2016,40(10),8614.
    8 Chang C,Gao N.Materials Review A:Review Papers,2016,30(8),1 (in Chinese).常春,高娜.材料导报:综述篇,2016,30(8),1.
    9 Wan J,Sun L,Fan J,et al.Applied Surface Science,2015,355,615.
    10 Soma K,Iwase A,Kudo A,et al.Catalysis Letters,2014,144(11),1962.
    11 Kekade S S,Gaikwad P V,Raut S A,et al.ACS Omega,2018,3(5),5853.
    12 Ri C N,Kim S G,Jong J Y,et al.New Journal of Chemistry,2018,42(1),647.
    13 Qu Z,Liu P,Yang X,et al.Materials,2016,9(3),129.
    14 Qiao X B,Seo H,et al.Materials Letters,2014,136,322.
    15 Peng J,Fan H,Ai S,et al.Research on Chemical Intermediates,2015,41(6),1.
    16 Sivakumara V,Suresha R,Giribabua K,et al.Solid State Sciences,2015,39,34.
    17 Malathi A,Madhavan J,Ashokkumar M,et al.Applied Catalysis,A:General,2018,555,47.
    18 Wu Min,Jing Qifeng,Feng Xinyan,et al.Applied Surface Science,2018,427(Part,A),525.
    19 Tan Hui Ling,Amal Rose,Ng Yun Hau.Journal of Materials Chemistry A:Materials for Energy and sustainability,2017,5(32),16498.
    20 Manev V,Momchilov A,Nassalevska A.Journal of Power Sources,1993,44(1-3),561.
    21 Li G H,Su G B,Zhuang X,et al.Optical Materials,2004,27,39.
    22 Huang S P,Wu D S,Shen J,et al.Journal of Physics:Condensed Matter,2006,18(23),5535.
    23 Zhang W G,Halasyamani P.Cryst Eng Comm,2012,14(20),6839.
    24 Yuan X,Liu Y Y,Zhuo S P,et al.Acta Chimica Sinica,2007,65(17),1814 (in Chinese).袁勋,柳玉英,禚淑萍,等.无机化学学报,2007,65(17),1814.
    25 Huang J H,Huang K L,Liu S Q,et al.Colloids and Surfaces A:Physi-cochem and Engineering Aspects,2008,330,55.
    26 Ma L K,Zhan F R.Chemical Engineering,2016(1),28 (in Chinese).马留可,詹福如.化学工程,2016(1),28.
    27 Kang H P,Sun Z Y,Liu J Y,et al.Chinese Journal of Environmental Engineering,2015,9(4),1620(in Chinese).康宏平,孙振亚,刘建永,等.环境工程学报,2015,9(4),1620.
    28 Liu X L,Song J M,Dong N,et al.Acta Physico-Chimica Sinica,2016,32(7),1844 (in Chinese).刘晓灵,宋继梅,董纳,等.物理化学学报,2016,32(7),1844.
    29 Vimonses V,Lei S,Bo J,et al.Chemical Engineering Journal,2009,148(2-3),354.
    30 Ho Y S,Mckay G.Process Biochemistry,1993,34(5),451.