基于719 nm水汽吸收波段的日光诱导叶绿素荧光反演研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment of Solar-Induced Chlorophyll Fluorescence Retrieval from the Atmospheric H_2O Absorption Bands at 719 nm
  • 作者:刘鸥阳 ; 刘良云 ; 胡姣婵 ; 刘新杰 ; 蒋金豹
  • 英文作者:Liu Ouyang;Liu Liangyun;Hu Jiaochan;Liu Xinjie;Jiang Jinbao;China University of Mining &Technology(Beijing);Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences;
  • 关键词:日光诱导叶绿素荧光(SIF) ; 夫琅和费暗线 ; 高光谱 ; FluorMOD模型 ; 大气水汽吸收 ; 大气氧气吸收
  • 英文关键词:Solar-induced chlorophyll fluorescence(SIF);;Hyspectral;;Fraunhofer line discrimination(FLD);;FluorMOD model;;Atmospheric vapor absorption;;Atmospheric oxygen absorption
  • 中文刊名:YGJS
  • 英文刊名:Remote Sensing Technology and Application
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;中国科学院遥感与数字地球研究所数字地球重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:遥感技术与应用
  • 年:2019
  • 期:v.34;No.167
  • 基金:国家自然科学基金项目(41571412、41601467);; 国家重点研发项目(2017YFA0603001)
  • 语种:中文;
  • 页:YGJS201903006
  • 页数:11
  • CN:03
  • ISSN:62-1099/TP
  • 分类号:58-68
摘要
日光诱导叶绿素荧光(SIF)是一种植物光合作用直接探测新方法。目前O_2-A和O_2-B吸收线波段的叶绿素荧光填充效应被广泛应用于探测近红外(760 nm)和红光波段(687 nm)的植被冠层SIF信号。SIF光谱范围为650~800 nm,虽然水吸收波段(719 nm)介于叶绿素荧光发射峰值690 nm和740 nm之间,且具备较强的光谱吸收特征,但该水汽吸收光谱特征尚未应用于冠层SIF探测,因此,基于模型模拟和野外实验观测数据,使用夫琅禾费暗线SIF反演法,评价了基于719 nm波段水吸收波段的SIF反演潜力,其中野外光谱数据采用ASD FieldSpec Pro便携式地物光谱仪(3 nm分辨率)测量。首先,利用FLD、3FLD、iFLD等3种经典的SIF反演方法,检验和对比分析了719水汽吸收波段的SIF反演性能,结果表明使用水吸收线比使用O_2-B吸收线表现更优,反演RMSE为0.154 W/m~2/μm/sr。其次,定量计算了水汽和氧气吸收波段SIF反演的敏感度和不确定性,结果表明,719水汽吸收波段与O_2-B吸收线相比,其吸收线内外的反射率和荧光比值估算误差对SIF反演误差的贡献更小,但是显大于比02-A波段。最后,利用野外多角度和日变化观测实验数据,检验和分析了三个大气吸收波段的SIF反演结果,发现719 nm水吸收波段的冠层SIF与O_2-A和O_2-B氧气吸收波段具有相似的角度变化和日变化特征,表现为后视和热点方向的SIF高、前视和暗点方向的SIF低,以及中午SIF高、早晚SIF低。研究表明利用719 nm波段的水汽吸收波段的光谱信息,可以准确反演近地面冠层SIF信号,研究结果为近地面冠层SIF观测提供了一个新的波段。
        In the visible and near-infrared region,at a spectral resolution of 1 nm,the solar irradiance spectrum exhibits four absorption features:the H_αFraunhofer line(656.4 nm),H_2O absorption at 719 nm,the O_2-B(687 nm) and O_2-A(761 nm) bands.Although the H_2O band is located between the chlorophyll fluorescence emission peaks at about 690 and 740 nm,it has never been investigated for SIF retrieval.In this paper,the potential of the H_2O absorption band at 719 nm for SIF retrieval is investigated using different Fraunhofer line discrimination(FLD) methods based on the FluorMOD simulations and field data taken by an ASD FieldSpec Pro spectrometer(3 nm resolution).Firstly,the SIF retrieval performance using the H_2O band was examined with different FLD methods at a spectral resolution of 1 nm.the results obtained using the H_2O band are better than for the O_2-B band,and the associated RMSE is 0.154 W/m~2/μm/sr.Then,the sensitivities and uncertainties of the SIF retrieval using the improved FLD(iFLD) method were calculated for the three atmospheric absorption bands.the total SIF estimation error and its contribution to the theoretical error in the two correction coefficients are found to be smaller using the H_2O band than using the O_2-B band,but significantly larger than that achieved using the O_2-A band.Finally,the SIF retrieval using the iFLD method in the three atmospheric absorption bands is also examined in a field experiment.the SIF retrieval using the H_2O band at 719 nm is found to have a similar performance to that using the O_2-B and O_2-A bands at canopy level.Finally,the SIF retrievals using the iFLD method in the three atmospheric absorption bands were also examined using field experiments.the SIF retrievals using the H_2O band at 719 nm are similar to those at O_2-A and O_2-B oxygen absorption band,showing high values in backward and hot-spot directions and low values in forward and dark directions,and high SIF values at noon and low SIF in the morning and afternoon.Therefore,the H_2-O absorb band provides a new band for retrieval of canopy SIF at near-ground platform.
引文
[1] Guanter L,Zhang Y,Jung M,et al.Global and Time-Resolved Monitoring of Crop Photosynthesis With Chlorophyll Fluorescence[J].Proceedings of the National Academy of Sciences U S A,2014,111(14):1327-1233.
    [2] Liu L,Guan L,Liu X.Directly Estimating Diurnal Changes in GPP for C3 and C4 Crops Using Far-Red Sun-Induced Chlorophyll Fluorescence[J].Agricultural & Forest Meteorology,2017,232:1-9.
    [3] Zhang Zhaoying,Wang Songhan,Qiu Bo,et al.Retrieval of Sun-Induced Chlorophyll Fluorescence and Advancements in Carbon Cycle Application[J].Journal of Remote Sensing,2019,23(1):37-52.[章钊颖,王松寒,邱博,等.日光诱导叶绿素荧光遥感反演及碳循环应用进展[J].遥感学报,2019,23(1):37-52.]
    [4] Maxwell K,Johnson G N.Chlorophyll Fluorescence:A Practical Guide[J].Journal of Experimental Botany,2000,51:659-668.
    [5] Plascyk J.the MKII Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar Stimulated Luminescence[J].Optical Engineering,1975,14(4):339-346.
    [6] Plascyk J,Gabriel F.the Fraunhofer Line Discriminator MKII:An Airborne Instrument for Precise and Standardized Ecological Luminescence Measurement[J].IEEE Transactions on Instrumentation and Measurement,1975,IM-24(4):306-313.
    [7] Liu Liangyun,Zhang Yongjiang,Wang Jihua,et al.Detecting Photosynthesis Fluorescence Under Natural Sunlight based on Fraunhofer Line[J].Journal of Remote Sensing,2006,10(1):130-137.[刘良云,张永江,王纪华,等.利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J].遥感学报,2006,10(1):130-137.]
    [8] Zhang Yongjiang,Liu Liangyun,Hou Mingyu,et al.Progress in Remote Sensing of Vegetation Chlorophyll Fluorescence[J].Journal of Remote Sensing,2009,13(5):963-978.[张永江,刘良云,侯名语,等.植物叶绿素荧光遥感研究进展[J].遥感学报,2009,13(5):963-978.]
    [9] Carter G A,Theisen A F,Mitchell R .Chlorophyll Fluorescence Measured Using the Fraunhofer Line-Depth Principle and Relationship to Photosynthetic Rate in the Field[J].Plant,Cell & Environment,1990,13(1):79-83.
    [10] Carter G A,Jones J H,Mitchell R J,et al.Detection of Solar-Excited Chlorophyll and Fluorescence and Leaf Photosynthetic Capacity Using A Fraunhofer Line Radiometer[J].Remote Sensing of Environment,1996,55(1):89-92.
    [11] Liu L,Zhang Y,Wang J,et al.Detecting Solar-Induced Chlorophyll Fluorescence from Field Radiance Spectra based on the Fraunhofer Line Principle[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):827-832.
    [12] Liu L,Liu X,Hu J.Effects of Spectral Resolution and SNR on the Vegetation Solar-Induced Fluorescence Retrieval Using FLD-based Methods At Canopy Level[J].European Journal of Remote Sensing,2015,48(1):743-762.
    [13] Joiner J,Yoshida Y,Vasilkov A P,et al.First Observations of Global and Seasonal Terrestrial Chlorophyll Fluorescence from Space[J].Biogeosciences,2011,8(3):637-651.
    [14] Shan N,Ju W,Migliavacca M,et al.Modeling Canopy Conductance and Transpiration from Solar-Induced Chlorophyll Fluorescence[J].Agricultural and Forest Meteorology,2019,268(4):189-201.
    [15] Gomez-Chova L,Alonso-Chorda L,Amoros-Lopez J,et al.Solar Induced Fluorescence Measurements Using A Field Spectroradiometer[C].Earth Observation for Vegetation Monitoring and Water Management,2006,852:274-281.
    [16] Alonso L,Gómez-Chova L,Vila-FrancéS L,et al.Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification[J].IEEE Geoscience and Remote Sensing Letters,2008,5(4):620-624.
    [17] Meroni M,Rossini M,Guanter L,et al.Remote Sensing of Solar-Induced Chlorophyll Fluorescence:Review of Methods and Applications[J].Remote Sensing of Environment,2009,113(10):2037-2051.
    [18] Maier S W,Günther K P,Stellmes M,et al.Sun-Induced Fluorescence:A New Tool for Precision Farming[M].Digital Imaging and Spectral Techniques:Applications to Precision Agriculture and Crop Physiology,2001:209-222.
    [19] Liu X,Liu L.Improving Chlorophyll Fluorescence Retrieval Using Reflectance Reconstruction based on Principal Components Analysis[J].IEEE Geoscience & Remote Sensing Letters,2015,12(8):1645-1649.
    [20] Guanter L,Frankenberg C,Dudhia A,et al.Retrieval and Global Assessment of Terrestrial Chlorophyll Fluorescence from GOSAT Space Measurements[J].Remote Sensing of Environment,2012,121(6):236-251.
    [21] Guanter L,Aben I,Tol P,et al.Potential of the Tropospheric Monitoring Instrument (TROPOMI) Onboard the Sentinel-5 Precursor for the Monitoring of Terrestrial Chlorophyll Fluorescence[J].Atmospheric Measurement Techniques,2015,8(3):1337-1352.
    [22] Joiner J,Yoshida Y,Vasilkov A P,et al.Filling-In of Far-Red and Near-Infrared Solar Lines by Terrestrial and Atmospheric Effects:Simulations and Space-based Observations from SCIAMACHY and GOSAT[J].Atmospheric Measurement Techniques Discussions,2012,5(1):163-210.
    [23] Guanter L,Koehler P,Walther S,et al.Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space:Status and Potential for Carbon Cycle Research[C]//AGU Fall Meeting,2005,AGU Fall Meeting Abstracts.
    [24] Joiner J,Yoshida Y,Guanter L,et al.New Methods for Retrieval of Chlorophyll Red Fluorescence from Hyper-Spectral Satellite Instruments:Simulations and Application to GOME-2 and SCIAMACHY[C]//Agu Fall Meeting.Copernicus Publications,2016,1-41.
    [25] K?hler P,Guanter L,Joiner J.A Linear Method for the Retrieval of Sun-Induced Chlorophyll Fluorescence from GOME-2 and SCIAMACHY Data[J].Atmospheric Measurement Techniques,2015,8(12):2589-2608.
    [26] Zhang Lifu,Wang Siheng,Huang Changping.Top-Of-Atmosphere Hyperspectral Remote Sensing of Solar-Induced Chlorophyll Fluorescence:A Review of Methods[J].Journal of Remote Sensing,2018,22(1):1-12.[张立福,王思恒,黄长平.太阳诱导叶绿素荧光的卫星遥感反演方法[J].遥感学报,2018,22(1):1-12.]
    [27] Du S,Liu L,Liu X,et al.Retrieval of Global Terrestrial Solar-Induced Chlorophyll Fluorescence from Tansat Satellite[J].Science Bulletin,2018,63(22):1502-1512.
    [28] Miller J R,Berger M,Goulas Y,et al.Development of A Vegetation Fluorescence Canopy Model[R].European Space Agency Contract,2005,16365/02/NL/FF.
    [29] Zarco-Tejada P J,Miller J R,Pedros R,et al.Fluormodgui V3.0:A Graphic User Interface for the Spectral Simulation of Leaf and Canopy Chlorophyll Fluorescence.Computers & Geosciences,2006,32(5):577-591.
    [30] Yan G,Ren H,Hu R,et al.A Portable Multi-Angle Observation System[C]//IEEE International Geoscience and Remote Sensing Symposium,2012:6916-6919.
    [31] Maier S W,GüNther K P,Stellmes M,et al.“Sun-Induced Fluorescence:A New Tool for Precision Farming.” in Digital Imaging and Spectral Techniques:Applications to Precision Agriculture and Crop Physiology[C]//American Society of Agronomy,2003:209-222.
    [32] Jacquemoud S,Verhoef W,Baret F,Bacour C,et al.PROSPECT+SAIL Models:A Review of Use for Vegetation Characterization[J].Remote Sensing of Environment,2009,113(1):56-66.
    [33] Liu L,Liu X,Wang Z,et al.Measurement and Analysis of Bidirectional SIF Emissions in Wheat Canopies[J].IEEE Transactions on Geoscience & Remote Sensing,2016,54(5):2640-2651.
    [34] Middleton E M,Cheng Y B,Corp L A,et al.Canopy Level Chlorophyll Fluorescence and the PRI in A Cornfield[C].IEEE Geoscience and Remote Sensing Symposium,2012,7117-7120.
    [35] Amoros-Lopez J,Gomez-Chova L,Vila-Frances J,et al.Evaluation of Remote Sensing of Vegetation Fluorescence by the Analysis of Diurnal Cycles[J].International Journal of Remote Sensing,2008,29(17-18):5423-5436.
    [36] Fournier A,Daumard F,Champagne S,et al.Effect of Canopy Structure on Sun-Induced Chlorophyll Fluorescence[J].Isprs Journal of Photogrammetry & Remote Sensing,2012,68(1):112-120.
    [37] Wittenberghe S V,Alonso L,Verrelst J.et al.Bidirectional Sun-Induced Chlorophyll Fluorescence Emission Is Influenced by Leaf Structure and Light Scattering Properties:A Bottom-Up Approach[J].Remote Sensing of Environment,2015,158:169-179.