高硫煤矸石解磷微生物细菌的研发及测试
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and test of phosphate-solubilizing bacteria dissociating phosphorus from high sulfur coal gangue
  • 作者:谢承卫 ; 高弦 ; 钟艳 ; 姜雄 ; 王应兰
  • 英文作者:XIE Chengwei;GAO Xian;ZHONG Yan;JIANG Xiong;WANG Yinglan;College of Chemistry and Chemical Engineering, Guizhou University;
  • 关键词:解磷菌 ; 筛选 ; 鉴定 ; 藤黄微球菌 ; 有效磷 ; 煤矸石
  • 英文关键词:phosphate-solubilizing bacteria;;screen;;identification;;micrococcus luteus;;available phosphorus;;coal gangue
  • 中文刊名:LFYF
  • 英文刊名:Phosphate & Compound Fertilizer
  • 机构:贵州大学化学与化工学院;
  • 出版日期:2019-02-15
  • 出版单位:磷肥与复肥
  • 年:2019
  • 期:v.34;No.205
  • 基金:贵州省科技厅2016年科技支撑计划项目(黔科合[2016]支撑2808号);; 中国烟草总公司贵州省公司科技项目(201708)
  • 语种:中文;
  • 页:LFYF201902004
  • 页数:5
  • CN:02
  • ISSN:41-1173/TQ
  • 分类号:12-16
摘要
采用平板法初筛、纯化、复筛,从风化煤矸石中筛选培养出一株具有高解磷活性的菌株GZU-Mi01。通过对菌株GZU-Mi01的菌落形态、生理生化性质实验,16S rRNA分子序列分析,NCBI细菌库对比,再通过VITEK 2 Compact全自动细菌鉴定及药敏分析系统测定,确认GZU-Mi01为藤黄微球菌。通过实验得出GZU-Mi01菌株对高硫煤矸石的解离效果优于传统商业细菌。高硫煤矸石经过解磷细菌GZU-Mi01解离处理后,其中难溶性磷可大幅转化成可溶性磷。
        A strain of bacteria GZU-Mi01 with high phosphate solubilizing activity is obtained from weathering coal gangue by primary screening, purification and secondary screening using flat method. The bacteria strain GZU-Mi01 is affirmed as micrococcus luteus by considering its colonial morphology, physiological and biochemical identification, 16 S rRNA molecular sequence analysis, NCBI reservoir contrast, and automated bacteria identification and drug sensitivity analysis system VITEK 2 Compact. The bacteria strain GZU-Mi01 is evaluated by comparison test of dissociating high sulfur coal gangue between GZU-Mi01 and traditional commercial phosphate solubilizing bacteria strain. The results show that GZU-Mi01 outperforms the traditional commercial bacteria. In addition, insoluble phosphorus contained in high sulfur coal gangue can be substantially converted to soluble phosphorus by phosphate-solubilizing bacteria GZU-Mi01.
引文
[1]曹建军,刘永娟,郭广礼.煤矸石的综合利用现状[J].环境污染治理技术与设备,2004,5(1):19-22.
    [2]刘迪.煤矸石的环境危害及综合利用研究[J].气象与环境学报,2006,22(3):60-62.
    [3]王光华,赵英,周德瑞,等.解磷菌的研究现状与展望[J].生态环境,2003,12(1):96-101.
    [4]王义,贺春萍,郑肖兰,等.土壤解磷微生物研究进展[J].安徽农学通报,2009,15(9):60-64.
    [5]黄鸿翔.我国土壤资源现状、问题及对策[J].土壤肥料,2005(1):3-6.
    [6]孙合美,王春红,卢冬雪,等.土壤溶磷微生物及其对植物促生作用研究进展[J].河南农业科学,2016,45(5):1-6.
    [7]张北赢,陈天林,王兵.长期施用化肥对土壤质量的影响[J].中国农学通报,2010,26(11):182-187.
    [8]叶协锋,张友杰,鲁喜梅,等.土壤微生物与土壤营养关系研究进展[J].土壤通报,2010,41(1):237-241.
    [9]李越中,郑是琳,姜广正.毛白杨落叶的分解及叶上小型真菌种群的演替[J].微生物学报,1992,32(4):299-304.
    [10] CORTEZ J,BOUCHE M. Decomposition of Mediterranean leaf litters by Nicodrilus meridionals(Lumbricidae)in laboratory and field experience[J]. Soil Biology and biochemistry,2001(33):2023-2035.
    [11] SUNDARA R B,SINHA M K. Phosphate-dissolving microorganisium intherhizosphere and soil[J]. Indian J Agric Soil,1963,33(4):272-278.
    [12] FREITAS J R,BANERJEE M R,GERMIDA J J. Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola(Brassica napus L)[J]. Bio Soils,1997,24:358-364.
    [13]冯瑞章,姚拓,周万海,等.溶磷菌和固氮菌溶解磷矿粉时的互作效应[J].生态学报,2006,26(8):2764-2769.
    [14]张艺严.我国土壤中磷元素利用现状及生物措施[J].中国农业信息,2013(15):99.
    [15]周翠红,常欣.煤矸石综合利用技术综述[J].选煤技术,2007(2):61-64.
    [16]贾倩倩,程帆,谢承卫.利用硅酸盐细菌(GY03)制备煤矸石肥料的研究[J].粉煤灰综合利用,2012(2):28-31.
    [17]钟艳,杨艳梅,谢承卫.利用巨大芽孢杆菌处理高硫和低硫煤矸石制备肥料的研究[J].贵州师范学院学报,2015,31(12):18-25.
    [18]袁向芬,谢承卫.利用巨大芽孢杆菌制备高硫煤矸石肥料[J].环境工程学报,2015,9(2):946-950.
    [19]袁向芬,程帆,杨艳梅,等.两种细菌处理高硫煤矸石制备肥料的研究[J].硅酸盐通报,2014,33(2):302-307.
    [20]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.