典型大跨度屋盖结构的风压谱工程简化模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Engineering model of wind pressure spectra on typical large-span roof structures
  • 作者:孙瑛 ; 苏宁 ; 武岳
  • 英文作者:SUN Ying;SU Ning;WU Yue;Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education,Harbin Institute of Technology;School of Civil Engineering,Harbin Institute of Technology;Tianjin Research Institute for Water Transport Engineering of China Ministry of Transportion;
  • 关键词:大跨屋盖 ; 风压谱 ; 风洞试验 ; 特征湍流 ; 工程简化模型
  • 英文关键词:large-span roof;;wind pressure spectrum;;wind tunnel test;;body-induced turbulence;;simplified engineering model
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:哈尔滨工业大学结构灾变与控制教育部重点实验室;哈尔滨工业大学土木工程学院;交通运输部天津水运工程科学研究所;
  • 出版日期:2019-04-24 17:11
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金面上项目(51478155);; 中央级公益性科研院所基本科研业务费专项(TKS1190204)
  • 语种:中文;
  • 页:JZJB201907003
  • 页数:11
  • CN:07
  • ISSN:11-1931/TU
  • 分类号:27-37
摘要
通过对平屋盖、悬挑屋盖、柱面屋盖、球面屋盖及鞍形屋盖五种典型大跨屋盖的1 730组风洞试验工况下18 048个风压时程样本的功率谱分析,采用峰值频率和相干指数对大跨屋盖特征湍流特性的风压谱进行表征并建立了简化模型。结果表明,从频谱特性角度,将上述五种形状的大跨度屋盖分为三类,即第Ⅰ类是以平屋盖和鞍形屋盖为代表的具有尖角钝体特性的屋盖,第Ⅱ类是以悬挑屋盖为代表的具有平板流特性的屋盖,第Ⅲ类是以柱面、球面屋盖为代表的具有曲面钝体绕流特性的屋盖;第Ⅰ、Ⅱ类屋盖峰值频率集中在0.1~0.2 Hz,相干指数分别集中于2.5和3.5附近;第Ⅲ类屋盖峰值频率集中在0.1 Hz以下,相干指数集中在4.0附近。经过统计分析,给出了参数分区值,以供结构抗风设计参考。
        The present research proposed a simplified engineering model of wind pressure spectra that can describe the characteristics of body-induced turbulence around large-span roofs.The model was based on the spectral analyses on1 730 cases,18 048 samples of wind tunnel data on five types of typical large-span roofs including flat,cantilevered,cylindrical,spherical and saddle roofs.Two key parameters,namely,the peak frequency and the coherence index,were introduced to describe the wind pressure spectra and to develop the simplified model.The results show that,the mentioned five types of large-span roofs can be divided into three categories in spectral perspective.Category Ⅰ is bluff body with sharp corners represented by flat and saddle roofs.Category Ⅱ is cantilevered roof characterized as planar flow.Category Ⅲ is curved bluff body represented by cylindrical and spherical roofs.For roof category Ⅰ andⅡ,the peak frequencies are concentrated at 0.1-0.2 Hz,while the coherence indexes are concentrated at 2.5 and3.5,respectively.For roof category Ⅲ,the peak frequencies are below 0.1 Hz,and the mode of coherence index is4.0.Finally,through statistical analyses,the zone values of spectral parameters are given for engineering reference.
引文
[1]BARNARD R H.Wind loads on cantilevered roof structures[J].Journal of Wind Engineering&Industrial Aerodynamics,1981,8(1):21-30.
    [2]KASPERSKI M,KOSS H,SAHLMEN J.BEATRICEjoint project:Wind action on low-rise buildings:part 1:basic information and first results[J].Journal of Wind Engineering&Industrial Aerodynamics,1996,64(2/3):101-125.
    [3]KUMAR K S.Simulation of fluctuating wind pressures on low building roofs[D].Montreal:Concordia University,1997.
    [4]CHEN M F.Characterization of wind pressure fluctuations on a gable roof house[D].South California:Clemson University,2000:10-12.
    [5]DAVENPORT A G.The response of slender line-like structures to a gusty wind[J].Proceedings of the Institution of Civil Engineers,1962,23:389-408.
    [6]UEMATSU Y,YAMADA M,SASAKI A.Windinduced dynamic response and resultant load estimation for a flat long-span roof[J].Journal of Wind Engineering&Industrial Aerodynamics,1996,65(1):155-166.
    [7]KUMARK S,STATHOPOULOS T.Computer simulation of fluctuating wind pressures on low building roofs[J].Journal of Wind Engineering&Industrial Aerodynamics,1997,69/70/71:485-495.
    [8]张清文.大跨度悬挑屋盖结构的风荷载特性研究[D].哈尔滨:哈尔滨工业大学,2006:18-20.(ZHANG Qingwen.Characteristics of wind loads on large cantilevered roofs[D].Harbin:Harbin Institute of Technology,2006:18-20.(in Chinese))
    [9]Architectural Institute of Japan.AIJ recommendations for loads on buildings[S].Tokyo:Architectural Institute of Japan,1993.
    [10]TAMURA Y,KAWAI H,UEMATSU Y,et al.Wind load and wind-induced response estimations in the recommendations for loads on buildings,AIJ 1993[J].Engineering Structures,1996,18(6):399-411.
    [11]孙瑛.大跨屋盖结构风荷载特性研究[D].哈尔滨:哈尔滨工业大学,2007:25-30.(SUN Ying.Characteristics of wind loading on long-span roofs[D].Harbin:Harbin Institute of Technology,2007:25-30.(in Chinese))
    [12]潘峰.大跨度屋盖结构随机风致振动响应精细化研究[D].杭州:浙江大学,2008:28-32.(PAN Feng.Refinement theory of random wind-induced dynamic response for long-span roof structuress[D].Hangzhou:Zhejiang University,2008:28-32.(in Chinese))
    [13]苏宁.大跨屋盖脉动风荷载谱模型研究[D].哈尔滨:哈尔滨工业大学,2014:31-40.(SU Ning.Research on spectral model of wind load on large-span roofs[D].Harbin:Harbin Institute of Technology,2014:31-40.(in Chinese))
    [14]张雷.储煤仓三心圆柱面屋盖风荷载及风振特性研究[D].哈尔滨:哈尔滨工业大学,2014:25-28.(ZHANG Lei.Characteristics of wind loads and windinduced vibration on basket-handle arch coal bunker[D].Harbin:Harbin Institute of Technology,2014:25-28.(in Chinese))
    [15]孙瑛,许楠,武岳.考虑特征湍流影响的体育场悬挑屋盖脉动风压谱模型[J].建筑结构学报,2010,31(10):24-33.(SUN Ying,XU Nan,WU Yue.Spectral model of fluctuating wind pressure on grandstand roofs with consideration of signature turbulence[J].Journal of Building Structures,2010,31(10):24-33.(in Chinese))
    [16]邵帅.弧形平面体育场悬挑屋盖风荷载特性及干扰效应研究[D].哈尔滨:哈尔滨工业大学,2013:22-28.(SHAO Shuai.Research on wind load characteristics and interference effects of arc cantilevered stadium roofs[D].Harbin:Harbin Institute of Technology,2013:22-28.(in Chinese))
    [17]孙瑛,苏宁,武岳.锥状涡作用下大跨度平屋盖表面脉动风压谱模型研究[J].土木工程学报,2014,47(1):88-98.(SUN Ying,SU Ning,WU Yue.Modelling of conical cortex induced fluctuating wind pressure spectra on large-span flat roofs[J].China Civil Engineering Journal,2014,47(1):88-98.(in Chinese))
    [18]张超东.大跨度柱面屋盖结构风荷载特性研究[D].哈尔滨:哈尔滨工业大学,2011:32-34.(ZHANGChaodong.Characteristics of wind load on long-span cylinder roofed structures[D].Harbin:Harbin Institute of Technology,2011:32-34.(in Chinese))
    [19]SUN Ying,QIU Ye,WU Yue.Modeling of wind pressure spectra on spherical domes[J].International Journal of Space Structures,2013,28(2):87-100.
    [20]QIU Ye,SUN Ying,WU Yue.Characteristics of wind loads on spherical shells with large rise-span ratio[J].Advanced Materials Research,2011,163/164/165/166/167:4149-4155.
    [21]梁枢果,王磊,郑以微,等.体育场悬挑屋盖结构风荷载解析模型[J].空气动力学学报,2013,31(4):511-517.(LIANG Shuguo,WANG Lei,ZHENGYiwei,et al.Mathematical model of wind loads on cantilevered roof of stadiums[J].Acta Aerodynamica Sinca,2013,31(4):511-517.(in Chinese))
    [22]GENESIO R,LAURENTINI A.Tables for butterworthdigital-filter design[J].Electronics Letters,1970,6(6):157-159.
    [23]TAYLOR G I.The spectrum of turbulence[J].Proceedings of the Royal Society of London,1938,164(919):476-490.
    [24]BARNARDR H.Predicting dynamic wind loading on cantilevered canopy roof structures[J].Journal of Wind Engineering&Industrial Aerodynamics,2000,85(1):47-57.
    [25]DAVENPORT A G.How can we simplify and generalize wind loads?[J].Journal of Wind Engineering&Industrial Aerodynamics,1995,54(94):657-669.
    [26]American Society of Civil Engineers(ASCE).Minimum design loads for buildings and other structures[S].Reston,VA:American Society of Civil Engineers,2010.