基于蝶形破坏理论的地震能量来源
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sources of seismic energy based on butterfly failure theory
  • 作者:马骥 ; 赵志强 ; 师皓宇 ; 郭晓菲 ; 乔建永 ; 马念杰
  • 英文作者:MA Ji;ZHAO Zhiqiang;SHI Haoyu;GUO Xiaofei;QIAO Jianyong;MA Nianjie;School of Energy and Mining Engineering,China University of Mining and Technology(Beijing);School of Safety Engineering,North China Institute of Science and Technology;Department of Mathematics,Beijing University of Posts and Telecommunications;
  • 关键词:地震 ; 地震能量 ; 软弱异性体 ; 蝶形破坏
  • 英文关键词:seismicity;;seismic energy;;soft anisotropic body;;butterfly failure
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)能源与矿业学院;华北科技学院安全工程学院;北京邮电大学理学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家自然科学基金资助项目(51704294,51434006);; 中央高校基本科研业务费资助项目(3142018022)
  • 语种:中文;
  • 页:MTXB201906004
  • 页数:12
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:34-45
摘要
地震发生时释放的巨大能量从何而来,一直以来都是还没有认识清楚的问题。考虑到两组地壳破裂带交叉部位强震频发的基本特点,基于蝶形破坏理论,构建以软弱异性体为中心的能量计算模型,提出了地震能量的计算方法。从软弱异性体围岩发生塑性破坏引发能量改变角度出发,数值模拟分析地震过程中有软弱异性体存在对地壳围岩能量分布的影响,探讨了自然地震触发的一般规律;以中国大陆西南地区含鲁甸ML6. 5级地震震中位置区域为地质背景,进一步对比分析有无软弱异性体条件下,地震震源能量与分布特征的变化规律。研究结果表明:地壳内部软弱异性体使其周围岩体应力重新分布,形成围绕软弱异性体的应力集中;随着挤压与张拉构造应力的加剧,软弱异性体围岩出现蝶形破坏区,蝶形破坏区蝶叶周围岩体集中的大量弹性能,是地震能量主要来源;软弱异性体使其周围岩体能量积聚特征呈指数型变化,且在软弱异性体围岩蝶形塑性破坏演化过程中会形成蝶形能量集中区,标志着系统由稳态向非稳态能量集中的转变;地震发生时软弱异性体周围岩体塑性破坏范围与积聚能量所处的状态决定了地震发生级别的大小,在蝶形塑性破坏的剧烈扩展阶段,微小的应力扰动即可引发整个围岩能量系统的灾变,引发大级别的自然地震。
        The source of greatest energy released during an earthquake has not yet been determined. Considering the basic characteristics of frequent occurrence of strong earthquakes at the intersection of two sets of crustal rupture zones,a model for energy analysis by taking a soft anisotropic body as the center was established and the calculated method of seismic energy was proposed on the basis of butterfly failure theory.From the viewpoint that the surrounding rocks of a soft anisotropic body were subjected to plastic failure resulting in the change in energy released,the authors numerically analyzed the influence of the presence of a soft anisotropic body on energy accumulation in surrounding crustal rocks during an earthquake,and discussed the general law of natural earthquake triggering.Based on the geological background of the epicenter location of the Ludian ML6.5 earthquake in the southwestern part of China,the variation law of source energy and distribution characteristics of earthquakes with or without a soft anisotropic body was further analyzed.The calculated results showed that the soft anisotropic body in the crust redistributed the stress in the surrounding rock mass and formed the stress concentration around the soft anisotropic body.With the increase of compression and tensile structural stress,the rock masses around soft anisotropic body were subjected to plastic failure leading to an accumulation of energy with the epicenter of butterfly-shaped damage zone,which was the main source of seismic energy.The soft anisotropic body changed the energy accumulation characteristics of the surrounding rock mass exponentially,and the butterfly-shaped energy concentration area was formed during the evolution of butterfly plastic damage in the surrounding rock of the soft anisotropic body,indicating the transition from the steady state to unsteady state of energy concentration.The range of plastic failure and the state of accumulated energy of rock mass around the soft anisotropic body determined the magnitude of earthquakes. In the period of intense expansion of the butterflyshaped failure,minor stress disturbances can cause the catastrophe of the whole energy system of surrounding rock and trigger large-magnitude natural earthquakes.
引文
[1]郭增建,秦保燕.地震成因和地震预报[M].北京:地震出版社,1991.
    [2]梁光河.地震与成矿过程研究综述[J].黄金科学技术,2016,24(6):8-14.LIANG Guanghe. Summary of research on earthquake and metallogenic process[J].Gold Science&Technology,2016,24(6):8-14.
    [3] REID H F.The mechanics of the earthquake,v.2 of The California Earthquake of April 18,1906:Report of the State Earthquake Investigation Commission[M]. Washington:Carnegie Institution of Washington Publication,1910.
    [4] BRIDGMAN P W.Polymorphic transitions and geological phenomena[J].American Journal of Science,1945,243A:90-97.
    [5]松泽武雄.地震理论及其应用[M].北京:地震出版社,1980:1-150
    [6] BRACE W F,BYERLEE J D.Stick-slip as a mechanism for earthquakes[J].Science,1966,153(3739),990-992.
    [7] BYERLEE J D,WYSS M. Rock friction and earthquake prediction[M].Basel:Birkhauser Basel,1978.
    [8]刘力强.弹性回跳模型:从经典走向未来[J].地震地质,2014,36(3):825-832.LIU Liqiang. Elastic rebound model:From the classic to the future[J].Seismology and Geology,2014,36(3):825-832.
    [9] DAS S,AKI K. Fault plane with barriers:A versatile earthquake model[J].Journal of Geophysical Research,1977,82(36):5658-5670.
    [10] WYSS M,JOHNSTON A C,KLEIN F W.Multiple asperity model for earthquake prediction[J].Nature,1981,289(5795):231-234.
    [11] GRIGGS D T,HANDIN J.Observations on fracture and a hypothesis of earthquakes[J]. Geological Society of America Memoirs,1960,79:347-364.
    [12] RALEIGH C B,PATERSON M S.Experimental deformation of serpentinite and its tectonic implications[J]. Geophys and Research,1965,70(16):3965-3985.
    [13] BURNLEY P C,GREEN H W.Stress dependence of the mechanism of the olivine-spinel transfor-mation[J]. Nature,1989,338:753-756.
    [14] QIN Siqing,XU Xiwei,HU Ping,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault and exploration of a new approach to earthquake prediction[J]. Chinese Journal of Geophysics,2015,53(4):611-626.
    [15] BARROWS L,LANGER C J.Gravitational potential as a source of earthquake energy[J].Tectonophysics,1981,76(3):237-255.
    [16]赵娟,韩延本.天文因素与地震灾害关系研究的进展[J].地球物理学进展,2007,22(4):1386-1392.ZHAO Juan,HAN Yanben. Progress of researches on astronomical factor and earthquake[J]. Progress in geophysics,2007,22(4):1386-1392.
    [17]徐道一.天体运动与地震预报[M].北京:地震出版社,1980:63-65.
    [18]马念杰,李季,赵志强.圆形巷道围岩偏应力场及塑性区分布规律研究[J].中国矿业大学学报,2015,44(2):206-213.MA Nianjie,LI Ji,ZHAO Zhiqiang. Distribution of the deviatoric stress field and plastic zone in circular roadway surrounding rock[J].Journal of China University of Mining and Technology,2015,44(2):206-213.
    [19]赵志强.大变形回采巷道围岩变形破坏机理与控制方法研究[D].北京:中国矿业大学(北京),2014.ZHAO Zhiqiang. Mechanism of surrounding rock deformation and failure and control method research in large deformation mining roadway[D]. Beijing:China University of Mining&Technology(Beijing),2014.
    [20]郭晓菲,马念杰,赵希栋,等.圆形巷道围岩塑性区的一般形态及其判定准则[J].煤炭学报,2016,41(8):1871-1877.GUO Xiaofei,MA Nianjie,ZHAO Xidong,et al. General shapes and criterion for surrounding rock mass plastic zone of round roadway[J].Journal of China Coal Society,2016,41(8):1871-1877.
    [21]马念杰,郭晓菲,赵志强,等.均质圆形巷道蝶型冲击地压发生机理及其判定准则[J].煤炭学报,2016,41(11):2679-2688.MA Nianjie,GUO Xiaofei,ZHAO Zhiqiang,et al.Occurrence mechanisms and judging criterion on circular tunnel butterfly rock burst in homogeneous medium[J]. Journal of China Coal Society,2016,41(11):2679-2688.
    [22]赵志强,马念杰,郭晓菲,等.煤层巷道蝶型冲击地压发生机理猜想[J].煤炭学报,2016,41(11):2689-2697.ZHAO Zhiqiang,MA Nianjie,GUO Xiaofei,et al. Mechanism conjecture of butterfly rock burst in coal seam roadway[J]. Journal of China Coal Society,2016,41(11):2689-2697.
    [23]马念杰,赵希栋,赵志强,等.掘进巷道蝶型煤与瓦斯突出机理猜想[J].矿业科学学报,2017,40(4):137-149.MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al. Conjecture about mechanism of butterfly-shape coal and gas outburst in excavation roadway[J].Journal China University of Mining and Technology,2017,40(4):137-149.
    [24]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1980.
    [25] TIMOSHENKO S P,GOODIER J N.Theory of elasticity[M].New York:Mc Graw-Hill Education,1970.
    [26]郑国璋.板块构造学说与地壳发展的基本规律[J].山西师范大学学报(自然科学版),1997(2):62-66.ZHENG Guozhang.Plate tectonics and the basic law of the earth’s crust development[J]. Journal of Shanxi Teacher’ s University(Natural Science Edition),1997(2):62-66.
    [27]陈惠发,A.F.萨里普,余天庆.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [28] PICHON X L,FRANCHETEAU J,BONNIN J.Plate tectonics[J].Developments in Geotectonics,1973,13(3):349-355.
    [29]谢富仁,崔效锋,赵建涛.全球应力场与构造分析[J].地学前缘,2003,10(S1):22-30.XIE Furen,CUI Xiaofeng,ZHAO Jiantao.Analysis of global tectonic stress field[J].Earth Science Frontiers,2003,10(S1):22-30.
    [30]潘裕生.青藏高原的形成与隆升[J].地学前缘,1999,(3):153-163.PAN Yusheng.Formation and uplifting of the Qinghai-Tibet plateau[J].Earth Science Frontiers,1999,(3):153-163.
    [31] SOWERBUTTS W T C.Crustal structure of the east african plateau and rift valleys from gravity measurements[J]. Nature,1969,223(5202):143-146.
    [32] DUO A. Energy inequalities in an elastic cylinder//Numerical analysis of partial differential equations[M]. Berlin Heidelberg:Springer-Verlag,2010.
    [33] MAIN I.Statistical physics,seismogenesis and seismic hazard[J].Reviews of Geophysics,1996,34:433-462.
    [34]吴忠良.地震震源物理中临界现象[M].北京:地震出版社:2000:86-109.
    [35] HEATON T H. Tidal triggering of earthquake[J]. Bulletin of the Seismologial Society of America,1982,72(6):2181-2200.
    [36] HILL D P,REASENBERG P A,MICHAEL A,et al.Sei-smicity remotely triggered by the magnitude 7. 3 Landers,California earthquake[J].Science,1993,260:1617-1623.
    [37] GOMBERG J,BEELER N M,BLANPIED M L,et al.Earthquake triggering by transient and static deformations[J]. Journal of the Geophys Research,1998,103(B10):24411-24426.
    [38] VELASCO A A,HERNANDEZ S,PARSONS T,et al.Global ubiquity of dynamic earthquake triggering[J].Nature Geoscience,2008,1:375-379.
    [39] STEACY S,GOMBERG J,COCCO M.Introduction to special section:Stress transfer,earthquake triggering,and time-dependent seismic hazard[J]. Journal of the Geophys Research,2005,110:B05S01.
    [40]王兴臣,丁志峰,武岩,等.鲁甸MS6.5地震震源区地壳结构及孕震环境研究[J].地球物理学报,2015,58(11):4031-4040.WANG Xingchen,DING Zhifeng,WU Yan,et al.The crustal structure and seismogenic environment in the Liudian MS6.5 earthquake region[J]. Chinese Journal of Geophysics,2015,58(11):4031-4040.
    [41]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2013.
    [42] WANG Z,ZHAO D,WANG J. Deep structure and seismogenesis of the north-south seismic zone in southwest China[J]. Journal of Geophysical Research,2010,115(B12),1-19.
    [43]王椿镛,MOONEY W D,王溪莉,等.川滇地区地壳上地幔三维速度结构研究[J].地震学报,2002,24(1):1-16.WANG Chunyong,MOONEY W D,WANG Xili,et al.Study on 3D velocity structure of crust and upper mantle in Sichuan-yunnan region,China[J].Acta Seismologica Sinica,2002,24(1):1-16.
    [44] SHEARER P M. Introduction to seismology(Third edition)[M].Cambridge:Cambridge University Press,2019.
    [45]李玉江,陈连旺,李红.云南地区构造应力应变场年变化特征的数值模拟[J].大地测量与地球动力学,2009,29(2):13-18.LI Yujiang,CHEN Lianwang,LI Hong.Numerical simulation of annual chance characteristics of tectonic stress-strain field in Yunnan area[J].Journal of Geodesy and Geodynamics,2009,29(2):13-18.
    [46]杨光亮,申重阳,谈洪波,等.云南鲁甸MS6.5地震震区地壳密度结构特征[J].地震地质,2014,36(4):1145-1156.YANG Guangliang,SHEN Chongyang,TAN Hongbo,et al. Crustal density structure of Yunnan Ludian MS6. 5 Earthquake area[J].Seismology and Geology,2014,36(4):1145-1156.
    [47]万永革.地震学导论[M].北京:科学出版社,2016.
    [48]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.
    [49]王腾文,李勇,李敬波,等.包谷垴-小河断裂带———2014年8月3日云南鲁甸Ms6.5地震发震构造[J].防灾科技学院学报,2015,17(2):1-7.WANG Tengwen,LI Yong,LI Jingbo,et al.Baogunao-Xiaohe fault:The seismogenic fault of ludian Ms6. 5 earthquake in Yunnan on Aug.3rd,2014[J]. Journal of Institute of Disaster Prevention,2015,17(2):1-7.
    [50]李强,游新兆,杨少敏,等.中国大陆构造变形高精度大密度GPS监测—现今速度场[J].中国科学:地球科学,2012,42(5):629-632.LI Qiang,YOU Xinzhao,YANG Shaomin,et al. A precise velocity field of tectonic deformation in china as inferred from Intensive GPS observations[J]. Science China:Earth Sciences,2012,55(5):629-632.
    [51] BENDICK R,FLESCH L.Reconciling lithospheric deformation and lower crustal flow beneath central Tibet[J]. Geology,2007,35(10):895-898.
    [52] WANG C Y,FLESCH L M,SILVER P G,et al.Evidence for mechanically coupled lithosphere in central Asia and resulting implications[J].Geology,2008,36(5):363-366.