氮气多层微槽道J-T效应制冷器性能实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on Multilayer Rectangular Micro-channel Joule-Thomson Cryocooler with Nitrogen
  • 作者:耿晖 ; 崔晓钰 ; 王文卿 ; 翁建华
  • 英文作者:Geng Hui;Cui Xiaoyu;Wang Wenqing;Weng Jianhua;School of Energy and Power Engineering,University of Shanghai for Science and Technology;School of Energy & Mechanical Engineering,Shanghai University of Electric Power;
  • 关键词:焦耳-汤姆逊效应 ; 微槽道 ; 降温速度
  • 英文关键词:Joule-Thomson effect;;rectangle micro channel;;velocity of temperature falling
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:上海理工大学能源与动力工程学院;上海电力学院能源与机械工程学院;
  • 出版日期:2017-09-18 09:22
  • 出版单位:制冷学报
  • 年:2017
  • 期:v.38;No.177
  • 基金:上海市自然科学基金(14ZR1429100)资助~~
  • 语种:中文;
  • 页:ZLXB201705014
  • 页数:6
  • CN:05
  • ISSN:11-2182/TB
  • 分类号:96-101
摘要
本文将多层矩形微槽道与焦汤制冷器两种结构结合制作了多层微槽道J-T效应制冷器,回热段设置高低压矩形通道各三层交叉叠放。以氮气为制冷剂,采集其在多层微槽道J-T节流制冷器各测点温度,分析氮气在制冷系统各阶段的降温特性,对比氮气与氩气在微槽道J-T效应制冷器中的实验结果。结果表明:当进口压力为4~8 MPa时,随着压力的增大,氮气冷端温度越低,达到稳定冷端温度的时间越短;当进口压力为8 MPa时,氮气冷端在200 s左右趋于稳定温度约1.7℃;在相同进口压力下,氩气冷端温度低于氮气,但氮气达到冷端温度的时间比氩气更短;进口压力为7 MPa时,氮气冷端温度稳定时间比氩气提前约450 s;进口压力8 MPa的氮气与4~5 MPa的氩气温降相近,且氮气的降温时间更短,可以考虑用氮气代替氩气以减少制冷成本。
        A multilayer micro-channel Joule-Thomson( J-T) cryocooler was designed by combining several layers of rectangular microchannels with a coke soup cooler. The heat recovery section was constructed using three layers of high-and low-voltage rectangular channels. Experiments were conducted using nitrogen as a refrigerant with inlet pressures ranging from 4 to 8 MPa,and the temperatures of each measuring point of the multi-layer microchannels in the J-T cryocooler were collected. The cooling characteristics of nitrogen in the various stages of the refrigeration system were analyzed,and the experimental results obtained when nitrogen and argon were used in the JT cryocooler were compared. The results show that,when the inlet pressure is 4-8 MPa,a lower temperature for the nitrogen cold end with increasing pressure corresponds to a shorter time period to reach a stable cold-end temperature. When the inlet pressure is 8 MPa,the cold-end temperature reaches 1. 7 ℃ at approximately 200 s. The argon cold-end temperature is lower than that of the nitrogen at the same inlet pressure; however,the time required for the nitrogen to reach the cold-end temperature is shorter than that for the argon. When the inlet pressure is 7 MPa,the temperature of the cold-end argon gas occurs approximately 450 s ahead of time. Further,the temperature drops for nitrogen at an 8 MPa inlet pressure and argon at a 4-5 MPa inlet pressure are similar. In addition,the nitrogen cooling time is shorter. Thus,the use of nitrogen instead of argon can reduce the cooling costs.
引文
[1]刘刚.节流微制冷器技术[J].激光与红外,2008,38(5):413-416.(LIU Gang.Joule-Thomson cryocooler technology[J].Laser&Infrared,2008,38(5):413-416.)
    [2]吕长水.快速J-T效应制冷器研发概况与趋势[J].红外与激光工程,2007,36(Suppl.2):521-525.(LYUChangshui.Development situation and tendency of the fastcool-down Joule-Thomson cryocoolers used for IRFPA[J].Infrared and Laser Engineering,2007,36(Suppl.2):521-525.)
    [3]马跃学,王娟,梁惊涛,等.记忆合金自调节式高效微型节流制冷器机理研究[J].航空兵器,2015,(2):38-41.(MA Yuexue,WANG Juan,LIANG Jingtao,et al.Study on high-efficiency miniature JT cryocooler regulated by shape memory alloy[J].Aero Weaponry,2015,(2):38-41.)
    [4]SUGITA H,SATO Y,NAKAGAWA T,et al.Cryogenic system design of the next generation infrared space telescope SPICA[J].Cryogenics,2010,50(9):566-571.
    [5]李家鹏,陈晓屏,陈军,等.微型节流制冷器在低温医疗中的发展与应用[J].真空与低温,2014,20(6):311-314.(LI Jiapeng,CHEN Xiaoping,CHEN Jun,et al.Develpment and application of a miniature Joule-Thomson cooler in cryosurgical[J].Vacuum and Cryogenics,2014,20(6):311-314.)
    [6]XUE H,NG K C,WANG J B.Performance evaluation of the recuperative heat exchanger in a miniature Joule-Thomson cooler[J].Applied Thermal Engineering,2001,21(18):1829-1844.
    [7]NG K C,XUE H,WANG J B.Experimental and numerical study on a miniature Joule-Thomson cooler for steadystate characteristics[J].International Journal of Heat&Mass Transfer,2002,45(3):609-618.
    [8]李家鹏,陈晓屏,陈军,等.基于正交试验的JT节流制冷器换热器热力性能研究[J].真空与低温,2015,21(6):343-347.(LI Jiapeng,CHEN Xiaoping,CHEN Jun,et al.Thermodynamic investigation of a Joule-Thomson cryocooler heat exchanger using orthogonal experimental design[J].Vacuum&Cryogenics,2015,21(6):343-347.)
    [9]王宏宇,张绍志,陈光明,等.高压氩气节流型低温探针的实验研究[J].低温工程,2014(1):22-26.(WANGHongyu,ZHANG Shaozhi,CHEN Guangming,et al.Experimental study on a cryoprobe utilizing throttling of high pressure argon[J].Cryogenics,2014(1):22-26.)
    [10]LITTLE W A.Microminiature Refrigeration[J].Review of Scientific Instruments,1984,55(5):661-680.
    [11]李巧巧,陈儿同,左志强,等.低温显微镜新冷源系统的实验研究[J].制冷学报,2011,32(3):53-55.(LIQiaoqiao,CHEN Rrtong,ZUO Zhiqiang,et al.Experimental study on a new low-temperature system for cryomicroscope[J].Journal of Refrigeration,2011,32(3):53-55.)
    [12]CAO H S,VANAPALLI S,HOLLAND H J,et al.A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J].International Journal of Refrigeration,2016,69:223-231.
    [13]赵庆孝,杨鹏飞,常兆华.新型超低温冷冻医疗系统的设计与实验研究[J].制冷学报,2009,30(6):57-60.(ZHAO Qingxiao,YANG Pengfei,CHANG Zhaohua.Design and experiment of new ultra-cryoablation system[J].Journal of Refrigeration,2009,30(6):57-60.)
    [14]叶萍,常兆华,赵庆孝,等.冷冻消融探针J-T节流制冷器降温特性的实验研究[J].制冷学报,2012,33(5):74-78.(YE Ping,CHANG Zhaohua,ZHAO Qingxiao,et al.Experimental charaterization of the Joule-Thomson cryostat of a cryoprobe[J].Journal of Refrigeration,2012,33(5):74-78.)
    [15]苏尚美,张亚男,成方园,等.微通道换热器的特性分析及其应用前景[J].区域供热,2007(5):34-38.(SUShangmei,ZHANG Yanan,CHENG Fangyuan,et al.Investigation and application of the micro-channel heat exchanger[J].Disrict Heating,2007(5):34-38.)
    [16]吴媛媛.制冷压缩冷凝机组中微通道换热器的研[D].南京:南京理工大学,2015.(WU Yuanyuan.Study on microchannel heat exchanger in refrigeration compression condensing unit[D].Nanjing:Nanjing University of Science and Technology,2015.)
    [17]闫彪,公茂琼,吴剑峰.微型压缩机驱动的微型混合工质J-T制冷器实验研究[J].制冷学报,2013,34(4):14-17.(YAN Biao,GONG Maoqiong,WU Jianfeng.Experimental investigation on a miniature mixed refrigerant J-Trefrigerator driven by a mini-compressor[J].Journal of Refrigeration,2013,34(4):14-17.)