含瓦斯煤弹性应变能计算新方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Novel Calculation Method for Elastic Strain Energy of Gassy Coal
  • 作者:胡祖祥 ; 徐小奔 ; 郝学
  • 英文作者:Hu Zuxiang;Xu Xiaoben;Hao Xue;Key Laboratory of Mining Coal Safety and Efficiently Constructed by Anhui Province and Ministry of Education,Anhui University of Science and Technology;School of Mining and Safety,Anhui University of Science and Technology;
  • 关键词:含瓦斯煤 ; 弹性应变能 ; 冲击倾向性指标法 ; 应力-体积应变曲线 ; 扩容临界点
  • 英文关键词:gassy coal;;elastic strain energy;;bursting liability index method;;stress-volumetric strain curve;;dilatancy critical point
  • 中文刊名:BASE
  • 英文刊名:Chinese Journal of Underground Space and Engineering
  • 机构:安徽理工大学煤矿安全高效开采省部共建教育部重点实验室;安徽理工大学能源与安全学院;
  • 出版日期:2019-02-15
  • 出版单位:地下空间与工程学报
  • 年:2019
  • 期:v.15;No.112
  • 基金:安徽省自然科学基金(1808085ME159);; 国家自然科学基金(51874006)
  • 语种:中文;
  • 页:BASE201901014
  • 页数:7
  • CN:01
  • ISSN:50-1169/TU
  • 分类号:104-110
摘要
为了探索含瓦斯煤破坏时释放弹性应变能的科学计算方法,针对硬岩与含瓦斯煤力学特征的差异,理论分析了常用冲击倾向性指标法计算弹性应变能的局限性。基于含瓦斯煤扩容力学特性,提出了以扩容临界点为界限,依据应力-体积应变曲线与横坐标轴围成的面积计算含瓦斯煤弹性应变能的新方法,并分别对硬岩和含瓦斯煤弹性应变能计算分析。结果表明,对于硬岩,常用冲击倾向性指标法和新方法计算结果基本一致,验证了本文提出的新方法的科学性;对于含瓦斯煤,常用冲击倾向性指标方法计算值远远大于新方法计算值。本文提出的"应力-体积应变"弹性应变能计算方法更能反映含瓦斯煤加载过程变形特征,为煤矿动力灾害的防控研究提供理论依据。
        In order to explore the scientific method for calculating the elastic strain energy released when gassy coal was broken,the limitations of commonly used bursting liability index method for calculating elastic strain energy were theoretically analysed against the differences in the mechanical characteristics of hard rock and gassy coal. Based on the dilatancy mechanical characteristics of gassy coal,a novel method of calculating the elastic strain energy of gassy coal was proposed based on the critical point of dilatancy and the area enclosed by the stress-volumetric strain curve and the abscissa axis,and the elastic strain energy of the hard rock and gassy coal were calculated and analysed respectively. The results show that the common bursting liability index method and the novel method are basically the same for hard rock,and the novel method is proved to be scientific. For the gassy coal,the calculated value of the commonly used bursting liability index method is much larger than that of the novel method. The "stress-volume strain"elastic strain energy method proposed in this paper can effectively reflect the deformation characteristics of gassy coal loading process,which provides a theoretical basis for the prevention and control of coal mine power disasters.
引文
[1]Xue S,Yuan L,Xie J,et al.Advances in gas content based on outburst control technology in Huainan,China[J].International Journal of Mining Science and Technology,2014,24(3):385-389.
    [2]Beamish B B,Crosdale P J.Instantaneous outbursts in underground coal overview and association with coal type[J].International Journal of Coal Geology,1998,35(4):27-55.
    [3]Hu Y,Hu X,Zhang Q,et al.Analysis on simulation experiment of outburst in uncovering coal seam in crosscut[J].Procedia Engineering,2012,45(2):287-293.
    [4]Díaz A,María B,González N.Control and prevention of gas outbursts in coal mines,Riosa-Olloniego coalfield,Spain[J].International Journal of Coal Geology,2007,69(4):253-266.
    [5]Burra A,Esterle J S,Golding S D.Horizontal stress anisotropy and effective stress as regulator of coal seam gas zonation in the Sydney Basin[J].International Journal of Coal Geology,2014,132(1):103-116.
    [6]Krzesinska M.Ultrasonic Studies of Outburst-prone Coals[J].International Journal of Rock Mechanics and Mining,1997,34(1):167-171.
    [7]Khazadi C,Hazzard J,Chalaturnyk R.Damage quantification of intact rocks using acoustic emission energies recorded during uniaxial compression test and discrete element modeling[J].Computers and Geotechnics,2015,67(6):94-102.
    [8]Chen B,Gu C,Bao T,et al.Failure analysis method of concrete arch dam based on elastic strain energy criterion Engineering[J].Failure Analysis,2016,60(2):363-373.
    [9]Leitner E J,Hao H.Three-dimensional finite element modelling of rocking bridge piers under cyclic loading and exploration of options for increased energy dissipation[J].Engineering Structures,2016,118(7):74-88.
    [10]Shen J,Jimenez R,Karakus M,et al.A simplified failure criterion for intact rocks based on rock type and uniaxial compressive strength[J].Rock Mech Rock Eng,2014,47(2):357-69.
    [11]Aksoy C O,Ozacar V,Yilmaz A.New laboratory equipment for rock breakability classification with impact energy[J].International Journal of Rock Mechanics and Mining Sciences,2012,54(3):159-164.
    [12]Zhang J C,Xu W Y,Wang H L,et al.A coupled elastoplastic damage model for brittle rocks and its application in modelling underground excavation[J].International Journal of Rock Mechanics and Mining Sciences,2016,84(4):130-141.
    [13]张志镇,高峰.3种岩石能量演化特征的试验研究[J].中国矿业大学学报,2015,44(3):416-422.(Zhang Zhizhen,Gao Feng.Experimental investigations on energy evolution characteristics of coal,sandstone and granite during loading process[J].Journal of China University of Mining and Technology,2015,44(3):416-422.(in Chinese))
    [14]Khaledi K,Mahmoudi E,Datcheva M,et al.Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading[J].International Journal of Rock Mechanics and Mining Sciences,2016,86(7):115-131.
    [15]梁昌玉,李晓,王声星,等.岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J].岩石力学与工程学报,2012,31(9):1830-1838.(Liang Changyu,Li Xiao,Wang Shengxing,et al.Experimental investigations on rate-dependent stressstrain characteristics and energy mechanism of rock under uniaixal compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1830-1838.(in Chinese))
    [16]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.(Xie Heping,Ju Yang,Li Liyun,et al.Energy mechanism of deformation and failure of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1729-1740.(in Chinese))
    [17]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570.(Xie Heping,Peng Ruidong,Ju Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565-3570.(in Chinese))
    [18]李天斌,陈子全,陈国庆,等.不同含水率作用下砂岩的能量机制研究[J].岩土力学,2015,36(增2):229-236.(Li Tianbin,Chen Ziquan,Chen Guoqin,et al.An experimental study of energy mechanism of sandstone with different moisture contents[J].Rock and Soil Mechanics,2015,36(Supp.2):229-236.(in Chinese))
    [19]郭建强,赵青,王军保,等.基于弹性应变能岩爆倾向性评价方法研究[J].岩石力学与工程学报,2015,34(9):1886-1893.(Guo Jianqiang,Zhao Qin,Wang Junbao,et al.Rockburst prediction based on elastic strain energy[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1886-1893.(in Chinese))
    [20]黄达,黄润秋,张永兴.粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J].岩石力学与工程学报,2012,31(2):245-255.(Huang Da,Huang Yunqiu,Zhang Yongxing.Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(2):245-255.(in Chinese))
    [21]刘保县,赵宝云,姜永东.单轴压缩煤岩变形损伤及声发射特性研究[J].地下空间与工程学报,2007,3(4):647-650.(Liu Baoxian,Zhao Baoyun,Jiang Yongdong.Study of deformation-damage and acoustic emissioncharacter of coalrock under uniaxial compression[J].Chinese Journal of Underground Space and Engineering,2007,3(4):647-650.(in Chinese))
    [22]陈岩,左建平,魏旭,等.煤岩组合体破坏行为的能量非线性演化特征[J].地下空间与工程学报,2017,13(1):124-132.(Chen Yan,Zuo Jianping,Wei Xu,et al.Energy nonlinear evolution characteristics of the failure behavior of coal-rock combined body[J].Chinese Journal of Underground Space and Engineering,2017,13(1):124-132.(in Chinese))
    [23]谢广祥,胡祖祥,王磊.深部高瓦斯工作面煤体采动扩容特性研究[J].煤炭学报,2014,39(1):91-96.(Xie Guangxiang,Hu Zuxiang,Wang Lei.Coal mining dilatancy characteristics of high gas working face in the deep mine[J].Journal of China Coal Society,2014,39(1):91-96.(in Chinese))
    [24]谢广祥,殷志强,胡祖祥,等.深井瓦斯煤层采动扩容致灾力学机理[J].煤炭学报,2015,40(1):24-29.(Xie Guangxiang,Yin Zhiqiang,Hu Zuxiang,et al.Disaster-causing mechanical mechanism of coal mining dilatancy of gassy seam in deep mine[J].Journal of China Coal Society,2015,40(1):24-29.(in Chinese))