利用土著硫杆菌生物沥浸去除猪粪中重金属的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioleaching of heavy metals from pig manure via indigenous sulfur-oxidizing bacteria
  • 作者:魏孝承 ; 刘东方 ; 廖力锐 ; 王振东 ; 李文姣 ; 杜丽琼 ; 李振东
  • 英文作者:WEI Xiao-cheng;LIU Dong-fang;LIAO Li-rui;WANG Zhen-dong;LI Wen-jiao;DU Li-qiong;LI Zhen-dong;College of Environmental Science and Engineering, Nankai University;
  • 关键词:生物沥浸 ; 猪粪 ; 重金属 ; 硫杆菌
  • 英文关键词:bioleaching;;pig manure;;heavy metals;;sulfur-oxidizing bacteria
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:南开大学环境科学与工程学院;
  • 出版日期:2018-11-20
  • 出版单位:农业环境科学学报
  • 年:2018
  • 期:v.37;No.279
  • 基金:国家重点研发计划项目(2016YFD0801002-01);; 天津市科技支撑计划项目(201601190)~~
  • 语种:中文;
  • 页:NHBH201811031
  • 页数:9
  • CN:11
  • ISSN:12-1347/S
  • 分类号:243-251
摘要
为探讨利用土著硫杆菌去除猪粪中重金属的可行性,通过摇瓶实验探究了初始pH值、初始接种量和温度对生物沥浸去除猪粪中重金属效果的影响,并研究了采用气提式反应器生物沥浸处理猪粪的效果。摇瓶实验研究结果表明,接种土著氧化硫硫杆菌后,28℃下180 r·min~(-1)摇床培养6 d,锥形瓶中猪粪的pH值下降至2左右。生物沥浸10 d,猪粪中Cu、Zn、Mn的浸出率均可达到90%以上。采用气提式反应器进行生物沥浸,初始接种量5%,系统温度30℃±2℃,曝气量2 L·min~(-1),Cu、Zn、Mn、Cd的最终浸出率分别为91.9%、94.8%、97.9%、92.5%。研究表明,利用土著硫杆菌可以在不进行预酸化的条件下有效去除猪粪中的重金属。
        In this study, the feasibility of employing indigenous sulfur-oxidizing bacteria to remove heavy metals from pig manure was investigated. Batch experiments were conducted to explore the effect of initial pH, inoculation level, and temperature on the bioleaching of heavy metals from pig manure. In addition, an airlift bioreactor was utilized to bioleaching heavy metals from pig manure. The results of the batch experiments showed that adjusting the pH to lower than 4 promoted the solubilization of heavy metals during pig manure bioleaching only slightly. However, increasing the level of inoculation with sulfur-oxidizing bacteria from 0 to 10% significantly accelerated the rates of pH reduction and heavy metal solubilization. Hence, the optimum inoculation volume recommended was 5%(V/V). The results also showed that the temperature significantly influenced the growth of sulfur-oxidizing bacteria and further affected the solubilization of heavy metals. The optimum temperature range for the growth of indigenous sulfur-oxidizing bacteria was 28~38 ℃. Finally, after 10 days of bioleaching, under the conditions of 28 ℃ and 180 r·min~(-1) with inoculation of sulfur-oxidizing bacteria, the solubilization of Cu, Zn, and Mn were all higher than 90%. In addition, when treated in the airlift bioreactor at 30 ℃±2 ℃, with an inoculation volume of 5%(V/V)and aeration of 2 L·min~(-1),91.9% of the Cu, 94.9% of the Zn, 97.8% of the Mn, and 92.5% of the Cd were leached out from the pig manure after 10 days. These results demonstrate that heavy metals in pig manure can be efficiently removed by indigenous sulfur-oxidizing bacteria without having to pre-acidify the manure.
引文
[1]侯月卿,赵立欣,孟海波,等.生物炭和腐植酸类对猪粪堆肥重金属的钝化效果[J].农业工程学报, 2014, 30(11):205-215.HOU Yue-qing, ZHAO Li-xin, MENG Hai-bo, et al. Passivating effect of biochar and humic acid materials on heavy metals during composting of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11):205-215.
    [2]耿维,胡林,崔建宇,等.中国区域畜禽粪便能源潜力及总量控制研究[J].农业工程学报, 2013, 29(1):171-179.GENG Wei, HU Lin, CUI Jian-yu, et al. Biogas energy potential for livestock manure and gross control of animal feeding in region level of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):171-179.
    [3]仇焕广,廖绍攀,井月,等.我国畜禽粪便污染的区域差异与发展趋势分析[J].环境科学, 2013, 34(7):2766-2774.QIU Huan-guang, LIAO Shao-pan, JING Yue, et al. Regional differences and development tendency of livestock manure pollution in China[J]. Environmental Science, 2013, 34(7):2766-2774.
    [4]董占荣,陈一定,林咸永,等.杭州市郊规模化养殖场猪粪的重金属含量及其形态[J].浙江农业学报, 2008, 20(1):35-39.DONG Zhan-rong, CHEN Yi-ding, LIN Xian-yong, et al. Investigation on the contents and fractionation of heavy metals in swine manures from intensive livestock farms in the suburb of Hangzhou[J]. Acta Agriculturae Zhejiangensis, 2008, 20(1):35-39.
    [5] Zhou D M, Hao X Z, Wang Y J, et al. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures[J]. Chemosphere, 2005, 59(2):167-175.
    [6] Wong M H, Chan K M, Liu W K. Trace metal concentrations in tilapia fed with pig and chicken manure[J]. Conservation Recycling, 1984, 7(2/3/4):351-360.
    [7] Quan W, Zhen W, Awasthi M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology,2016, 220:297-304.
    [8] Marcato C E, Pinelli E, Pouech P, et al. Particle size and metal distributions in anaerobically digested pig slurry[J]. Bioresource Technology,2008, 99(7):2340-2348.
    [9] Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy[J]. Hydrometallurgy, 2001, 9(2/3):81-89.
    [10]周顺桂,周立祥,黄焕忠.生物淋滤技术在去除污泥中重金属的应用[J].生态学报, 2002, 22(1):125-133.ZHOU Shun-gui, ZHOU Li-xiang, WONG Woo-chung. Removal of heavy metals from sewage sludge by bioleaching[J]. Acta Ecologica Sinica, 2002, 22(1):125-133.
    [11] Zeng J, Gou M, Tang Y Q, et al. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community[J]. Bioresource Technology, 2016, 218:859-866.
    [12]杨洁,汪群慧,王琪,等.垃圾焚烧飞灰浓度对黑曲霉生长及重金属生物淋滤效果的影响[J].环境科学, 2008, 29(3):825-830.YANG Jie, WANG Qun-hui, WANG Qi, et al. Influence of fly ash concentrations on the growth of Aspergillus niger and the bioleaching efficiency of heavy metals[J]. Environmental Science, 2008, 29(3):825-830.
    [13]赵玲,杨栋,朱南文.废旧干电池的生物法资源回收技术[J].有色冶金设计与研究, 2007, 28(2):98-102.ZHAO Ling, YANG Dong, ZHU Nan-wen. Bioleaching process for recovery of spent batteries[J]. Nonferrous Metals Engineering&Research, 2007, 28(2):98-102.
    [14] Yang Z, Zhang Z, Chai L, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90[J]. Journal of Hazardous Materials, 2016, 301:145-152.
    [15] Seidei H, Wennrich R, Hoffmann P, et al. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments[J]. Chemosphere, 2006, 62(9):1444-1453.
    [16] Pathak A, Dastidar M G, Sreekrishnan T R. Bioleaching of heavy metals from sewage sludge:A review[J]. Journal of Environment Management, 2009, 90(8):2343-2353.
    [17]杨慧敏,王凯军,李明华.生物沥浸法去除不同初始pH值猪粪中的重金属[J].环境科学与技术, 2010, 33(6):154-159.YANG Hui-min, WANG Kai-jun, LI Ming-hua. Bioleaching of heavy metals from pig manure with different initial pH[J]. Environmental Science&Technology, 2010, 33(6):154-159.
    [18]杨慧敏,李明华,王凯军,等.生物沥浸法去除畜禽粪便中重金属的影响因素研究[J].生态与农村环境学报, 2010, 26(1):73-77.YANG Hui-min, LI Ming-hua, WANG Kai-jun, et al. Factors affecting bioleaching of heavy metals from animal excrement[J]. Journal of Ecology and Rural Environment, 2010, 26(1):73-77.
    [19] Liu F W, Zhou L X, Zhou J, et al. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH[J]. Journal of Hazardous Materials, 2012, 221-222(4):170-177.
    [20]陈德.内循环反应器生物沥滤法去除制革污泥中铬的试验研究[D].南京:南京林业大学, 2008.CHEN De. Experimental study on bioleaching of Cr from tannery sludge in an inner loop reactor[D]. Nanjing:Nanjing Forestry University, 2008.
    [21] Fang D, Zhou L X. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor[J]. Chemosphere, 2007, 69(2):303-310
    [22] Chen S Y, Lin J G. Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria:Effects of sludge solids concentration[J]. Chemosphere, 2004, 54(3):283-289.
    [23]黄玉溢,陈桂芬,刘斌,等.畜禽粪便中重金属含量、形态及转化的研究进展[J].广西农业科学, 2010, 41(8):807-809.HUANG Yu-yi, CHEN Gui-fen, LIU Bin, et al. Research process on contents, speciation and transformation of heavy metals in livestock and poultry manures[J]. Guangxi Agriculture Science, 2010, 41(8):807-809.
    [24] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
    [25] Zhang P, Yi Z, Zhang G, et al. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria:Effects of ratio of substrate dosage to solid content[J]. Bioresource Technology, 2008, 100(3):1394-1398.
    [26] Chartier M, Couillard D. Biological processes:The effects of initial pH, percentage inoculum and nutrient enrichment on the solubilization of sediment bound metals[J]. Water Air Soil Pollution, 1997, 96(1/2/3/4):249-267.
    [27] Wong J W C, Xiang L, Chan L C. pH requirements for the bioleaching of heavy metals from anaerobically digested wastewater sludge[J]. Water Air Soil Pollution, 2002, 138(1/2/3/4):25-35.
    [28] Zhou J, Zhou L, Liu F, et al. Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus[J]. Environmental Technology, 2012, 33(22/23/24):2553-2360.
    [29]杜丽琼,刘东方,杨丹,等.超声和无机酸浸提猪粪中的重金属[J].环境工程学报, 2018, 12(1):272-277.DU Li-qiong, LIU Dong-fang, YANG Dan, et al. Extraction of heavy metal from pig manure using ultrasound and inorganic acid[J]. Chinese Journal of Environmental Engineering, 2018, 12(1):272-277.
    [30] Kumar R N, Nagendran R. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans[J]. Chemosphere, 2007, 66(9):1775-1781.
    [31] Wei X C, Liu D F, Li W J, et al. Biochar addition for accelerating bioleaching of heavy metals from swine manure and reserving the nutrients[J]. Science of the Total Environment, 2018, 631-632:1553-1559.
    [32]鲍士旦.土壤农化分析[M].三版.北京:中国农业出版社, 2000.BAO Shi-dan. Soil agricultural chemistry analysis[M]. 3th Edition.Beijing:China Agriculture Press, 2000.