蓝铁矿形成于污泥厌氧消化系统的验证与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vivianite Formed in Anaerobic Digestion of Excess Sludge: Verification and Analysis
  • 作者:郝晓地 ; 周健 ; 王崇臣
  • 英文作者:HAO Xiao-di;ZHOU Jian;WANG Chong-chen;Key Laboratory of Urban Stormwater System and Water Environment < MOE > ,Beijing University of Civil Engineering and Architecture;Sino-Dutch R & D Centre for Future Wastewater Treatment Technologies,Beijing University of Civil Engineering and Architecture;
  • 关键词:磷回收 ; 蓝铁矿 ; 剩余污泥 ; 厌氧消化 ; 异化金属还原菌 ; 甲烷菌
  • 英文关键词:phosphorus recovery;;vivianite;;excess sludge;;anaerobic digestion;;dissimilation metal reducing bacteria(DMRB);;methane production bacteria(MPB)
  • 中文刊名:GSPS
  • 英文刊名:China Water & Wastewater
  • 机构:北京建筑大学城市雨水系统与水环境省部共建教育部重点实验室;北京建筑大学中-荷未来污水处理技术研发中心;
  • 出版日期:2018-07-01
  • 出版单位:中国给水排水
  • 年:2018
  • 期:v.34;No.465
  • 基金:国家自然科学基金资助项目(51578036);; 北京“未来城市设计高精尖中心”项目(2018)
  • 语种:中文;
  • 页:GSPS201813003
  • 页数:7
  • CN:13
  • ISSN:12-1073/TU
  • 分类号:23-29
摘要
磷危机"与"水体富营养化"现象随行,致污水磷回收势在必行。最近,在污泥厌氧消化过程中发现了磷回收新产物——蓝铁矿,一种化学稳定性很强、回收用途极为广泛、经济价值更高的磷酸盐化合物。鉴于此,通过试验验证污泥厌氧消化条件下,Fe~(3+)生物还原至Fe~(2+)、与污泥释放的PO_4~(3-)反应生成蓝铁矿的可行性以及所需环境条件与限制因素。结果显示,Fe~(3+)在厌氧消化过程中会被异化金属还原菌(DMRB)还原为Fe~(2+),与污泥细胞裂解释放出的PO_4~(3-)可以生成蓝铁矿,含量高达204 mg/g DS。进言之,碳酸盐(MCO_3)不会干扰蓝铁矿生成。Fe~(3+)被生物还原时,DMRB会与产甲烷菌(MPB)争夺电子供体(有机物),一方面会抑制厌氧消化产甲烷(CH_4),另一方面,Fe~(3+)也提供了MPB所必需的Fe元素,可刺激酶活,反而能促进产CH_4过程;Fe~(3+)对产CH_4过程的综合影响为促进作用。
        Phosphorus crisis"occurs along with"eutrophication"simultaneously,which results in essential P-recovery.Recently,a new product of P-recovery,Fe_3(PO_4)_2·8H_2O(vivianite),was observed in anaerobic digestion(AD)of excess sludge,which is a phosphate compound with a better chemical stability,more extensive applications and higher economic values.For this reason,experiments were conducted to verify the biological reduction of Fe~(3+)into Fe~(2+),to observe the chemical formation of Fe~(2+)with PO_4~(3-)released from sludge under AD and to ascertain environmental conditions and limited factors.The experimental results indicated that Fe~(3+)was biologically reduced into Fe~(2+)by dissimilation metal reducing bacteria(DMRB)under AD,with which PO_4~(3-)released from sludge was combined to form vivianite,up to 204 mg/g DS.Furthermore,carbonate(MCO_3)in the AD system did not interfere with the formation of vivianite.When Fe~(3+)was biologically reduced,DMRB competed with methane production bacteria(MPB)for electron donors(organics),which could inhibit methane(CH_4)production and could on the other hand promote CH_4 production; the comprehensive effect of Fe~(3+) on CH_4 production was positive.
引文
[1]van Dijk K C,Lesschen J P,Oenema O.Phosphorus flows and balances of the European Union Member States[J].Science of the Total Environment,2016,542:1078-1093.
    [2]郝晓地.磷危机概观与磷回收技术[M].北京:高等教育出版社,2011.Hao Xiaodi.Overview of Phosphorus Crisis and Technologies of Its Recovery[M].Beijing:Higher Education Press,2011(in Chinese).
    [3]郝晓地.可持续污水—废物处理技术[M].北京:中国建筑工业出版社,2006.Hao Xiaodi.Sustainable Treatment Technologies of Wastewater-Wastes[M].Beijing:China Architecture&Building Press,2006(in Chinese).
    [4]Hao X D,Wang C C,van Loosdrecht M C M,et al.Looking beyond struvite for P-recovery[J].Environ Sci Technol,2013,47(10):49-65.
    [5]Wang C C,Hao X D,Guo G S,et al.Formation of pure struvite at neutral p H by electrochemical deposition[J].Chem Eng J,2010,159(1/3):280-283.
    [6]Wilfert P,Mandalidis A,Dugulan A I,et al.Vivianite as an important iron phosphate precipitate in sewage treatment plants[J].Water Res,2016,104:449-460.
    [7]Wilfert P,Kumar P S,Korving L,et al.The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater:A review[J].Environ Sci Technol,2015,49(16):9400-9414.
    [8]Rothe M,Frederichs T,Eder M,et al.Evidence for vivianite formation and its contribution to long-term phosphorus retention in a recent lake sediment:a novel analytical approach[J].Biogeosciences,2014,11(5):5169-5180.
    [9]Rothe M,Kleeberg A,Hupfer M.The occurrence,identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments[J].Earth-Science Reviews,2016,158:51-64.
    [10]Roussel J.Metal Behavior in Anaerobic Sludge Digesters Supplemented with Trace Nutrients[D].Birmingham:University of Birmingham,2012.
    [11]杨艳飞.磷酸亚铁和磷酸亚铁锂制备工艺及其性能研究[D].郑州:郑州大学,2012.Yang Yanfei.Study on the Technology for Synthesis Ferrous Phosphate and Lithium Iron Phosphate and on Their Electrochemical Properties[D].Zhengzhou:Zhengzhou University,2012(in Chinese).
    [12]Cosmidis J,Benzerara K,Morin G,et al.Biomineralization of iron-phosphates in the water column of Lake Pavin(Massif Central,France)[J].Geochimica Et Cosmochimica Acta,2014,126(2):78-96.
    [13]Liu C,Gorby Y A,Zachara J M,et al.Reduction kinetics of Fe(Ⅲ),Co(Ⅲ),U(Ⅵ),Cr(Ⅵ),and Tc(Ⅶ)in cultures of dissimilatory metal-reducing bacteria[J].Biotechnol Bioeng,2010,80(6):637-649.
    [14]Lovley D R.Dissimilatory Fe(Ⅲ)and Mn(Ⅳ)reduction[J].Advances in Microbial Physiology,2004,49(2):219-224.
    [15]刘丽红,谢桂琴,王晓萍.异化金属还原菌及其应用[J].哈尔滨师范大学自然科学学报,2008,24(3):81-84.Liu Lihong,Xie Guiqin,Wang Xiaoping.Dissimilated metal reducing bacteria and their application[J].Journal of Natural Science of Harbin Normal University,2008,24(3):81-84(in Chinese).
    [16]Hau H H,Gralnick J A.Ecology and biotechnology of the genus Shewanella[J].Annual Review of Microbiology,2007,61(1):237-258.
    [17]韩俊成.希瓦氏菌胞外电子传递机制的解析和应用[D].合肥:中国科学技术大学,2017.Han Juncheng.Analysis and Application of Shewanella Extracellular Electron Transport Mechanism[D].Hefei:University of Science and Technology of China,2017(in Chinese).
    [18]Wei J,Hao X,van Loosdrecht M C M,et al.Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron:A review[J].Renewable&Sustainable Energy Reviews,2018,89:16-26.
    [19]Hao X,Jing W,van Loosdrecht M C M,et al.Analysing the mechanisms of sludge digestion enhanced by iron[J].Water Res,2017,117:58-67.