基于叠层衍射成像的二元光学元件检测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of the binary optical element based on ptychography
  • 作者:王磊 ; 窦健泰 ; 马骏 ; 袁操今 ; 高志山 ; 魏聪 ; 张天宇
  • 英文作者:Wang Lei;Dou Jian-Tai;Ma Jun;Yuan Cao-Jin;Gao Zhi-Shan;Wei Cong;Zhang Tian-Yu;School of Electronic and Optical Engineering,Nanjing University of Science and Technology;Department of Physics,Nanjing Normal University;
  • 关键词:叠层衍射成像 ; 二元光学元件 ; 相位复原 ; 特征尺寸标定
  • 英文关键词:ptychography;;binary optical element;;phase retrieval;;feature size calibration
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京理工大学电子工程与光电技术学院;南京师范大学物理科学与技术学院;
  • 出版日期:2017-04-18 11:08
  • 出版单位:物理学报
  • 年:2017
  • 期:v.66
  • 基金:国家自然科学基金(批准号:61377015,61505080,61575095);; 中国科协“青年人才托举工程”(批准号:2015QNRC001);; 中央高校基本科研业务费专项资金(批准号:30920130111007)资助的课题~~
  • 语种:中文;
  • 页:WLXB201709017
  • 页数:9
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:159-167
摘要
本文提出了一种基于叠层衍射成像(ptychography)的二元光学元件的检测方法,该方法可实现对二元光学元件表面微观轮廓的检测以及特征尺寸的标定.相比于传统的二元光学元件检测方法,其使用无透镜成像技术,简化了系统结构并可适用于特殊环境下的检测.该方法可直接通过采集多幅衍射图,利用叠层衍射成像迭代算法可精确地复原大尺寸待测元件的表面微观轮廓,提高大尺寸器件的检测效率.本文模拟仿真了台阶高度与噪声大小对纯相位台阶板复原结果的影响,并在光学实验中选取计算全息板为样品,复原样品的表面微观轮廓信息以及得到台阶高度.以白光干涉仪检测结果为标准,该方法在精度要求不太高的前提下,可获得令人满意的成像质量.
        Due to the extremely high diffractive efficiency and flexible design freedom,binary optical element can realize specific function in the optical system in comparison with the traditional refractive optical element.Ptychography,which is a typical lensless optical imaging technology with simple structure,has the advantages of the extensible imaging range and high resolution.The topography of binary optical element can produce the phase difference between the illumination and transmission fields.The features of binary optical element are based on the complex amplitude modulation.So we can obtain the complex transmission function by using ptychography to realize the phase retrieval.In this paper,we propose a detection method for binary diffractive optical element based on ptychography.An improved ptychography optical system is designed by using the combination of variable aperture and lens to control the illumination field.Because the illumination field is a diverging spherical wave,the diffractive patterns can avoid the high contrast and the reconstruction result will contain more details of the sample.The proposed method can not only inspect a large region of the binary optical element,but also calibrate its feature size,such as step height.Compared with the traditional binary optical element detection methods,the proposed method can simplify the system structure,and it can be applied to special environment by using lensless imaging technology.The increasing of the diffraction pattern numbers can acquire the topography of the large size sample and improve the detection efficiency.Taking a phase step plate for sample,the simulations are conducted to analyze the influences of step height and noise on the recovery result.The results show that the detection range of step height is less than 1.5λ.We can realize a preferable sample reconstruction when the noise of diffraction pattern is less than 5%.A computer-generated holography(CGH) is reconstructed by using the extended ptychographic iterative engine.The diameter of illumination filed is selected to be about 2 mm in order to obtain a large detection region of the sample.The surface micro topography of CGH can be shown through the 1.98 mm × 1.98 mm recovery result.More details can be obtained by changing the diameter of illumination filed about 1.6 mm.The recovery result is quite accurate and the error of step height is less than 30 nm compared with the result of white light interference detection.The simulation and experimental results verify the feasibility of this method.When the requirement for accuracy is not extremely high,the proposed method can obtain a satisfactory image quality.In addition,we hope to improve the proposed method,which can be more accurate to detect different types of optical elements in the future research.
引文
[1]Stone T,George N 1988 Appl.Opt.27 2960
    [2]Guo T,Li F,Chen J P,Fu X,Hu X T 2016 Opt.Lasers Eng.82 41
    [3]Coppola G,Di Caprio G,GioffréM,Puglisi R,Balduzzi D,Galli A,Miccio L,Paturzo M,Grilli S,Finizio A,Ferraro P 2010 Opt.Lett.35 3390
    [4]Chen X G,Liu S Y,Zhang C W,Jiang H,Ma Z C,Sun T Y,Xu Z M 2014 Opt.Express 22 15165
    [5]Rodenburg J M,Hurst A C,Cullis A G 2007 Ultramicroscopy 107 227
    [6]Sun J S,Zhang Y Z,Chen Q,Zuo C 2016 Acta Opt.Sin.36 1011005(in Chinese)[孙佳嵩,张玉珍,陈钱,左超2016光学学报36 1011005]
    [7]Thibault P,Dierolf M,Bunk O,Menzel A,Pfeiffer F2009 Ultramicroscopy 109 338
    [8]Hoppe W 1969 Acta Cryst.A 25 495
    [9]Fienup J R 1982 Appl.Opt.21 2758
    [10]Rodenburg J M,Faulkner H M L 2004 Appl.Phys.Lett.85 4795
    [11]Maiden A M,Rodenburg J M 2009 Ultramicroscopy 1091256
    [12]Pan X C,Veetil S P,Liu C,Lin Q,Zhu J Q 2013 Chin.Opt.Lett.11 021103
    [13]Maiden A M,Humphry M J,Zhang F C,Rodenburg J M 2011 J.Opt.Soc.Am.A 28 604
    [14]Rodenburg J M,Hurst A C,Cullis A G,Dobson B R,Pfeiffer F,Bunk O,David C,Jefimovs K,Johnson I 2007Phys.Rev.Lett.98 034801
    [15]Claus D,Maiden A M,Zhang F C,Sweeney F G,Humphry M J,Schluesener H,Rodenburg J M 2012 Opt.Express 20 9911
    [16]Liu X L,Pan Z,Wang Y L,Shi Y S 2015 Acta Phys.Sin.64 234201(in Chinese)[刘祥磊,潘泽,王雅丽,史祎诗2015物理学报64 234201]
    [17]Wang Y L,Li T,Gao Q K,Zhang S G,Shi Y S 2013Opt.Eng.52 091720
    [18]Claus D,Robinson D J,Chetwynd D G,Shuo Y,Pike W T,JoséJ D J,Rodenburg J M 2013 J.Opt.15 035702
    [19]Tao H,Veetil S P,Cheng J,Pan X C,Wang H Y,Liu C,Zhu J Q 2015 Appl.Opt.54 1776
    [20]Wang H Y,Liu C,Veetil S P,Pan X C,Zhu J Q 2014Opt.Express 22 2159
    [21]Wang Y L,Shi Y S,Li T,Gao Q K,Xiao J,Zhang S G 2013 Acta Phys.Sin.62 064206(in Chinese)[王雅丽,史祎诗,李拓,高乾坤,肖俊,张三国2013物理学报62064206]
    [22]Hüe F,Rodenburg J M,Maiden A M,Midgley P A 2011Ultramicroscopy 111 1117
    [23]Humphry M J,Kraus B,Hurst A C,Maiden A M,Rodenburg J M 2012 Nat.Commun.3 730
    [24]Rodenburg J M,Hurst A C,Maiden A M 2010 J.Phys.:Conf.Ser.241 012003