β-FeOOH的合成及其对阴离子染料酸性橙Ⅱ的吸附特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SYNTHESIS OF β-FeOOH AND ADSORPTION MECHANISM OF ANIONIC DYES ACIDIC ORANGE Ⅱ
  • 作者:董伟强 ; 李若林 ; 倪雅萍 ; 张必宪 ; 徐轶群
  • 英文作者:DONG Wei-qiang;LI Ruo-lin;NI Ya-ping;ZHANG Bi-xian;XU Yi-qun;School of Environmental Science and Engineering,Yangzhou University;
  • 关键词:β-FeOOH ; 酸性橙Ⅱ ; 吸附
  • 英文关键词:β-FeOOH;;acid orange Ⅱ;;adsorption
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:扬州大学环境科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.250
  • 基金:国家自然科学基金(31372133);; 扬州大学科技创新培育基金(2017CXJ054)
  • 语种:中文;
  • 页:HJGC201904016
  • 页数:7
  • CN:04
  • ISSN:11-2097/X
  • 分类号:83-89
摘要
采用简单的水热法合成棒状β-FeOOH,用于去除水中阴离子染料酸性橙Ⅱ(AOⅡ)。利用扫描电镜(FE-SEM)、X射线衍射仪(XRD)、粒径和比表面积(BET)对产物进行表征,研究了吸附动力学和等温线模型,考察了pH值、初始浓度和吸附剂载量对吸附效果的影响。结果表明:吸附剂对AOⅡ在15,35,55℃条件下最大吸附量分别为284. 90,283. 29,277. 78 mg/g;吸附过程符合准二级动力学模型和Langmuir模型,吸附过程主要是单分子层吸附;在酸性和中性条件下有利于吸附;当AOⅡ初始浓度在200~500 mg/L时,吸附量随着初始浓度的增大而增加;当β-FeOOH载量为0. 015 g时,吸附效率最高。
        Rodlike β-FeOOH adsorbents were fabricated via a hydrothermal process,to be used for the removal of anionic dye acid orange Ⅱ( AOⅡ) in aqueous solutions. The adsorbent was characterized by scanning electron microscopy( FE-SEM),X-ray diffractometry( XRD) and particle size and specific surface area( BET),the adsorption kinetics and isotherm model were studied,and the adsorption performance by pH,initial concentration of AOⅡ and dosage of composite adsorbents was investigated. The results indicated that the maximum adsorption capacity of the adsorbent to AO Ⅱ was 284. 90,283. 29,277. 78 mg/g at 15,35,55 ℃,respectively; the adsorption process conformed to quasi second-order kinetic model as well as Langmuir model,and the adsorption process was mainly monolayer adsorption; it was favorable for adsorption under acidic and neutral conditions; when the initial concentration of AOⅡ was 200 ~ 500 mg/L,the adsorption amount increased with increase of the initial concentration; when the β-FeOOH load was 0. 015 g,the adsorption efficiency was the highest.
引文
[1] Almeida F P,Botelho M B S,Doerenkamp C,et al. Mesoporous aluminosilicate glasses:potential materials for dye removal from wastewater effluents[J]. Journal of Solid State Chemistry,2017,253:406-413.
    [2] Wang T,Zhao P,Lu N,et al. Facile fabrication of Fe3O4/MIL-101(Cr)for effective removal of acid red 1 and orange G from aqueous solution[J]. Chemical Engineering Journal,2016,295:403-413.
    [3] Chen J P,Zhu X S. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by highperformance liquid chromatography for determination of Rhodamine B in food samples[J]. Food Chemistry,2016,200:10-15.
    [4] Gong J L,Zhang Y L,Jiang Y,et al. Continuous adsorption of Pb(Ⅱ)and methylene blue by engineered graphite oxide coated sand in fixed-bed column[J]. Applied Surface Science,2015,330:148-157.
    [5] Nascimento G E D,Campos N F,Silva J J D. Adsorption of anionic dyes from an aqueous solution by banana peel and green coconut mesocarp[J]. Desalination&Water Treatment,2016,57(30):14093-14108.
    [6]苟三评.羟基氧化铁复合物处理印染废水的研究[D].成都:西南交通大学,2016.
    [7] MbackéM K,Kane C,Diallo N O,et al. Electrocoagulation process applied on pollutants treatment-experimental optimization and fundamental investigation of the crystal violet dye removal[J].Journal of Environmental Chemical Engineering,2016,4(4):4001-4011.
    [8]刘红艳,高濂.湿化学法原位合成硫掺杂的纳米金红石Ti O2可见光催化剂[J].无机材料学报,2005,20(2):470-474.
    [9] Zhou R, Srinivasan M P. Photocatalysis in a packed bed:degradation of organic dyes by immobilized silver nanoparticles[J].Journal of Environmental Chemical Engineering,2015,3(2):609-616.
    [10] Labanda J,SabatéJ,Llorens J. Experimental and modeling study of the adsorption of single and binary dye solutions with an ionexchange membrane adsorber[J]. Chemical Engineering Journal,2011,166(2):536-543.
    [11] Ahmad A A,Idris A,Hameed B H. Organic dye adsorption on activated carbon derived from solid waste[J]. Desalination&Water Treatment,2013,51(13/14/15):2554-2563.
    [12] Li A N,Cai Z,Wang W,et al. A thermo-sensitive imaging coating derived from polymer nanoparticles containing infrared absorbing dye[J]. European Polymer Journal,2014,52(1):166-171.
    [13] Xiang C,Guo R H,Lan J W,et al. Self-assembling porous 3D titanium dioxide-reduced graphene oxide aerogel for the tunable absorption of oleic acid and RhodamineB dye[J]. Journal of Alloys&Compounds,2017,735.
    [14]熊慧欣,周立祥.不同晶型羟基氧化铁(Fe OOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J].岩石矿物学杂志,2008,27(6):559-566.
    [15]张敏,张佩聪,倪师军,等.β-Fe OOH的水热法合成及其去除Cr(Ⅵ)实验研究[J].矿物岩石,2016,36(3):115-120.
    [16]朱诗蓓.铁矿物Fe OOH对重金属和富营养元素的吸附研究[D].扬州:扬州大学,2016.
    [17] Chang M Y,Juang R S. Adsorption of tannic acid,humic acid,and dyes from water using the composite of chitosan and activated clay[J]. J Colloid Interface Sci,2004,278(1):18-25.
    [18]张佳琪,陈亚君,王风贺,等.膨润土对盐酸四环素的吸附性能[J].环境工程学报,2016,10(9):4808-4814.
    [19]戴树桂.环境化学[M]. 2版.北京:高等教育出版社,2006.
    [20]徐长松,李宁,夏淑梅.α-Fe OOH对靛蓝胭脂红的吸附性能[J].环境工程学报,2016,10(9):4973-4978
    [21] Xiong W,Zeng G,Yang Z,et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe)as new adsorbent[J].Science of the Total Environment,2018,627:235-244.
    [22] Li W,Jian Z,Ran Z,et al. Adsorption of basic dyes on activated carbon prepared from Polygonum orientale,Linn:equilibrium,kinetic and thermodynamic studies[J]. Desalination, 2010,254(1):68-74.
    [23] Vimonses V,Lei S M,Jin B,et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J].Chemical Engineering Journal,2009,148(2):354-364.
    [24] Oliveira W E,Franca A S,Oliveira L S,et al. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions[J]. Journal of Hazardous Materials,2008,152(3):1073-1081.
    [25]孙垦.天然黏土矿物的有机改性及其对阴离子型PPCPs的吸附研究[D].北京:中国地质大学,2016.