股骨转子间骨折手术中螺钉位置的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in lag screw placement for intertrochanteric hip fractures
  • 作者:茆玮 ; 何益群 ; 董有海
  • 英文作者:MAO Wei;HE Yi-qun;DONG You-hai;Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University;
  • 关键词:股骨转子间骨折 ; 拉力螺钉 ; 螺旋刀片 ; 测量方法
  • 英文关键词:femoral intertrochanteric fracture;;lag screw;;helical blade;;measurements
  • 中文刊名:ZJXS
  • 英文刊名:Orthopedic Journal of China
  • 机构:复旦大学附属上海市第五人民医院骨科;
  • 出版日期:2019-03-20
  • 出版单位:中国矫形外科杂志
  • 年:2019
  • 期:v.27;No.464
  • 基金:复旦大学附属上海市第五人民医院院级人才培养计划(编号:2017WYRCSG03)
  • 语种:中文;
  • 页:ZJXS201906013
  • 页数:6
  • CN:06
  • ISSN:37-1247/R
  • 分类号:56-61
摘要
股骨转子间骨折是下肢最常见的骨折之一。绝大部分转子间骨折需手术治疗,而转子间骨折手术中的螺钉位置是影响手术疗效、减少并发症以及促进骨折愈合的一个重要因素。将螺钉置入在股骨头内一个合适的位置,骨折复位可以获得更大的稳定性。目前测量螺钉位置的方法主要有:克利夫兰分区法、帕克率、尖顶距、尖顶距参考距等。这些测量方法为术者置入螺钉提供了理论依据,然而每一种测量方法仍存在局限性。本文通过对转子间骨折手术中螺钉位置的研究进展进行综述,旨在帮助螺钉位置的测量方法得到进一步完善和创新,摆脱点和区域的限制,从而为临床工作中完成更稳定的内固定手术提供理论指导。
        Femoral intertrochanteric fracture is one of the most common lower limb fractures and most of the intertrochanteric fractures require surgical treatment. On the other hand, the proper placement of the lag screw or helical blade is one of key points affecting the treatment efficacy, which might provide improved stability of the internal fixation. The main methods for accurate screw placement include the Cleveland zone, the Parker'sratio, the tip-apex distance, and the calcar referenced tip-apex distance. Although these methods have given some guidance for implant placement, each of them still exists its own limitation.In this review the recent advances in lag screw placement are summarized to facilitate further improvement and innovation of screw insertion as getting rid of point or area limitation, and provide reference for achieving more stable internal fixation in clinical practice.
引文
[1] Ballane G, Cauley J, Luckey M, et al. Secular trends in hip fractures worldwide:opposing trends East versus West[J]. J Bone Miner Res, 2014, 29(8):1745-1755.
    [2] Cummings S, Rubin S, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen[J]. Clin Orthop, 1990, 1:163-166.
    [3] Ma K, Wang X, Luan F, et al. Proximal femoral nails antirotation,Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur:a meta-analysis[J]. Orthop Traumatol Surg Res, 2014, 100(8):859-866.
    [4] Lenich A, Vester H, Nerlich M, et al. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-blade vs screw[J]. Injury, 2010, 41(12):1292-1296.
    [5] Andruszkow H, Frink M, Fromke C, et al. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures[J]. Int Orthop, 2012, 36(11):2347-2354.
    [6] Strubel P, Moustoukas M, Obremskey W. Mechanical failure after locking plate fixation of unstable intertrochanteric femur fractures[J]. J Orthop Trauma, 2013, 27(1):22-28.
    [7] Tsang ST, Aitkey SA, Golay SK, et al. When does hip fracture surgery fail[J]. Injury, 2014, 45(7):1059-1065.
    [8] Yoo JH, Kim TY, Chang JD, et al. Factors influencing functional outcomes in united intertrochanteric hip fractures:a negative effect of lag screw sliding[J]. Orthop, 2014, 37(12):1101-1107.
    [9] Goffin J, Pankaj P, Simpson A. The importance of lag screw position for the stabilization of trochanteric fractures with a sliding hip screw:a subject-specific finite element study[J]. J Orthop Res,2013, 31(4):596-600.
    [10] Gven M, Yavuz U, Kadioglu B, et al. Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw[J]. Orthop Traumatol Surg Res, 2010, 96(1):21-27.
    [11] Turgut A, Kalenderer?, Karap?nar L, et al. Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of298 patients[J]. Arch Orthop Trauma Surg, 2016, 136(5):623-630.
    [12] Biber R, Berger J, Bail H. The art of trochanteric fracture reduction[J]. Injury, 2016, 47(7):3-6.
    [13] Debruijn K, Den Hartog D, Tuinebreijer W, et al. Reliability of predictors for screw cutout in intertrochanteric hip fractures[J]. J Bone Joint Surg Am, 2012, 94(14):1266-1272.
    [14] Kaufer H. Mechanics of the treatment of hip injuries[J]. Clin Orthop, 1980, 146:53-61.
    [15] Kaufer H, Matthews LS, Sonstegard D. Stable fixation of intertrochanteric fractures[J]. J Bone Joint Surg Am, 1974, 56(5):899-907.
    [16] Gotfried Y. The lateral trochanteric wall:a key element in the reconstruction of unstable pertrochanteric hip fractures[J]. Clin Orthop, 2004, 1:82-86.
    [17] Hsueh K, Fang C, Chen C, et al. Risk factors in cutout of sliding hip screw in intertrochanteric fractures:an evaluation of 937 patients[J]. Int Orthop, 2010, 34(8):1273-1276.
    [18] Cleveland M, Bosworth D, Thompson F, et al. A ten-year analysis of intertrochanteric fractures of the femur[J]. J Bone Joint Surg Am, 1959, 41:1399-1408.
    [19] Caruso G, Bonomo M, Valpiani G, et al. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures:can the tip-apex distance(TAD)still be considered the best parameter[J]. Bone Joint Res, 2017, 6(8):481-488.
    [20] Nikoloski A, Osbrough A, Yates P. Should the tip-apex distance(TAD)rule be modified for the proximal femoral nail antirotation(PFNA)? A retrospective study[J]. J Orthop Surg Res, 2013, 8:35.
    [21] Kane P, Vopat B, Heard W, et al. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement[J]. Clin Orthop, 2014, 472(8):2492-2498.
    [22] Sadic S, Custovic S, Jasarevic M, et al. Proximal femoral nail antirotation in treatment of fractures of proximal femur[J]. Med Arch,2014, 68(3):173-177.
    [23] Liu W, Zhou D, Liu F, et al. Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails[J].J Trauma Acute Care Surg, 2013, 75(2):304-310.
    [24] Jenkins P, Ramaesh R, Pankaj P, et al. A micro-architectural evaluation of osteoporotic human femoral heads to guide implant placement in proximal femoral fractures[J]. Acta Orthop, 2013, 84(5):453-459.
    [25] Parker M. Cutting-out of the dynamic hip screw related to its position[J]. J Bone Joint Surg Br, 1992, 74(4):625.
    [26] Pervez H, Parker M, Vowler S. Prediction of fixation failure after sliding hip screw fixation[J]. Injury, 2004, 35(10):994-998.
    [27] Kashigar A, Vincent A, Gunton M, et al. Predictors of failure for cephalomedullary nailing of proximal femoral fractures[J]. Bone Joint J, 2014, 96-B(8):1029-1034.
    [28] Baumgaertner M, Curtin S, Lindskog D, et al. The value of the tipapex distance in predicting failure of fixation of peritrochanteric fractures of the hip[J]. J Bone Joint Surg Am, 1995, 77(7):1058-1064.
    [29] Haidar S, Thomas B. Prediction of fixation failure after sliding hip screw fixation[J]. Injury, 2005, 36(12):1491.
    [30] Kuzyk P, Zdero R, Shah S, et al. Femoral head lag screw position for cephalomedullary nails:a biomechanical analysis[J]. J Orthop Trauma, 2012, 26(7):414-421.
    [31] Li S, Chang S, Jin Y, et al. A mathematical simulation of the tipapex distance and the calcar-referenced tip-apex distance for intertrochanteric fractures reduced with lag screws[J]. Injury, 2016,47(6):1302-1308.
    [32] Puthezhath K, Jayaprakash C. Is calcar referenced tip-apex distance a better predicting factor for cutting out in biaxial cephalomedullary nails than tip-apex distance[J]. J Orthop Surg(Hong Kong), 2017, 25(3):2309499017727920.
    [33] Caruso G, Andreotti M, PARI C, et al. Can TAD and CalTAD predict cut-out after extra-medullary fixation with new generation devices of proximal femoral fractures? A retrospective study[J]. J Clin Orthop Trauma, 2017, 8(1):68-72.
    [34] Murena L, Moretti A, MEO F, et al. Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures:a retrospective study of 813 patients[J]. Arch Orthop Trauma Surg,2018, 138(3):351-359.
    [35] Jiamton C, Boernert K, Babst R, et al. The nail-shaft-axis of the of proximal femoral nail antirotation(PFNA)is an important prognostic factor in the operative treatment of intertrochanteric fractures[J]. Arch Orthop Trauma Surg, 2018, 138(3):339-349.
    [36] Shyam KA, Parmar V, Bankart J, et al. Comparison of accuracy of lag screw placement in cephalocondylic nails and sliding hip screw plate fixation for extracapsular fractures of the neck of femur[J].Int Orthop, 2006, 30(5):320-324.
    [37] Goffin J, Jenkins P, Ramaesh R, et al. What is the relevance of the tip-apex distance as a predictor of lag screw cut-out[J]. PlosOne,2013, 8(8):71195.
    [38] Kyle R, Cabanela M, Russell T, et al. Fractures of the proximal part of the femur[J]. Instr Course Lect, 1995, 44:227-253.
    [39] Garden RS. The structure and function of proximal end of the femur[J]. J Bone Joint Surg, 1961, 43:1-10.
    [40] Brown S, Pollintine P, Powell D, et al. Regional differences in mechanical and material properties of femoral head cancellous bone in health and osteoarthritis[J]. Calcif Tissue Int, 2002, 71(3):227-234.