新型含苯并呋喃的非线性光学发色团的合成与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Properties of A Novel Nonlinear Optical Chromophore Containing Benzo[b]furan Moiety
  • 作者:邓国伟 ; 徐钧 ; 禹云枫 ; 杨帆 ; 王洁雪 ; 韩涛 ; 张琦 ; 李仲辉 ; 张小玲
  • 英文作者:DENG Guo-wei;XU Jun;YU Yun-feng;YANG Fan;WANG Jie-xue;HAN Tao;ZHANG Qi;LI Zhong-hui;ZHANG Xiao-ling;Institute of Functional Molecules, College of Chemistry and Life Science,Chengdu Normal University;
  • 关键词:非线性光学发色团 ; 苯并呋喃 ; 三氰基呋喃 ; 合成 ; 电光性质 ; 光学材料
  • 英文关键词:nonlinear optical chromophore;;benzo[b]furan;;tricyanofuran;;synthsis;;electro-optic;;optical material
  • 中文刊名:HCHX
  • 英文刊名:Chinese Journal of Synthetic Chemistry
  • 机构:成都师范学院化学与生命科学学院功能分子研究所;
  • 出版日期:2019-03-20
  • 出版单位:合成化学
  • 年:2019
  • 期:v.27;No.169
  • 基金:四川省教育厅科研创新团队(17TD0005);; 四川省科技厅应用基础研究项目(2016JY0186;18YYJC1026)
  • 语种:中文;
  • 页:HCHX201903007
  • 页数:5
  • CN:03
  • ISSN:51-1427/O6
  • 分类号:40-44
摘要
以基于久洛尼定的苯并呋喃衍生物为电子给体,三氰基呋喃衍生物为电子受体经Knoevenagel缩合反应合成了一种新型含苯并呋喃的非线性光学发色团(JBFC),其结构经~1H NMR,~(13)C NMR和HR-MS表征,并通过紫外可见吸收光谱、热重分析、理论计算和电光性能测试对非线性光学发色团的性能进行了研究。结果表明:JBFC具有较好的热稳定性,T_d值(质量减少5%时)为214℃,将JBFC制得的极化电光聚合物薄膜的电光系数为30 pm·V~(-1)。
        A novel nonlinear optical(NLO) chromophore(JBFC) using julolidine-based benzo[b]furan and tricyanofuran derivative as the electron donor and acceptor respectively was designed and synthesized through Knoevenagel condensation reaction. The structure was characterized by ~1H NMR, ~(13)C NMR and HR-MS. The properties were studied through UV-Vis absorption spectra, thermogravimetric analysis, theoretical calculation and EO activity test. The results showed that JBFC possess good thermal stability(T_d reached to 214 ℃),and the doped electro-optic(EO) films exhibited the highest EO coefficient of 30 pm·V~(-1) after the contact electric field poling.
引文
[1] DALTON L R, SULLIVAN P A, BALE D H. Electric field poled organic electro-optic materials:State of the art and future prospects[J].Chem Rev,2010,110(1):25-55.
    [2] LI M, LI Y, ZHANG H, et al. Molecular engineering of organic chromophores and polymers for enhanced bulk second-order optical nonlinearity[J].J Mater Chem C,2017,5(17):4111-4122.
    [3] LI Z, CHEN P, XIE Y, et al. Ar-ArF self-assembly of star-shaped second-order nonlinear optical chromophores achieving large macroscopic nonlinearities[J].Adv Electron Mater,2017,3(11):1700138.
    [4] SUN H, LI, Z, WU J, et al. Design,synthesis,and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor[J].J Mater Chem C,2018,6(11):2840-2847.
    [5] XU H, WANG N, ZHANG X, et al. Monolithic NLO chromophores with different pendant groups and matrix-assisted-poling effect:Synthesis and characterization[J].Dyes Pigments,2018,157:230-237.
    [6] DENG G, CHUN X, LI Z, et al. Synthesis and features of nonlinear optical switches based on dithienylethene unit[J].Tetrahedron Lett,2018,59(37):3448-3452.
    [7] WU J, WANG W, GONG C, et al. Tuning the strength of intramolecular charge-transfer of triene-based nonlinear optical dyes for electro-optics and optofluidic lasers[J].J Mater Chem C,2017,5(30):7472-7478.
    [8] LIU J, ZHANG M, GAO W, et al. Synthesis and nonlinear optical properties of novel conjugated small molecules based on indole donor[J].J Mol Struct,2018,1165:223-227.
    [9] DALTON L R. Rational design of organic electro-optic materials[J].J Phys-Condens Mat, 2003,15(20):R897-R934.
    [10] CHO M J, CHOI D H, SULLIVAN P A, et al. Recent progress in second-order nonlinear optical polymers and dendrimers[J].Prog Polym Sci,2008,33(11):1013-1058.
    [11] WU J, WANG W, WANG N, et al. Structure-property analysis of julolidine-based nonlinear optical chromophores for the optimization of microscopic and macroscopic nonlinearity[J].Phys Chem Chem Phys,2018,20(36):23606-23615.
    [12] DENG G, XU H, KUANG L, et al. Novel nonlinear optical chromophores based on coumarin:Synthesis and properties studies[J].Opt Mater,2019,88:218-222.
    [13] ZHANG M, DENG G, ZHANG A, et al. Synthesis and properties of a new second-order NLO chromophore containing the benzo[b]furan moiety for electro-optical materials[J].Rsc Adv,2014,4(63):33312-33318.
    [14] LIU J, GAO W, KITYK I V, et al. Optimization of polycyclic electron-donors based on julolidinyl structure in push-pull chromophores for second order NLO effects[J].Dyes Pigments,2015,122:74-84.
    [15] LIU S, HALLER M A, MA H, et al. Focused microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores[J].Adv Mater,2003,15(7-8):603-607.
    [16] WU J, LIU J, ZHOU T, et al. Enhanced electro-optic coefficient(r(33)) in nonlinear optical chromospheres with novel donor structure[J].Rsc Adv,2012,2(4):1416-1423.
    [17] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03,Gaussian,Inc,Pittsburgh,PA,2003.
    [18] THANTHIRIWATTE K S, NALIN DE SILVA K M. Non-linear optical properties of novel fluorenyl derivatives—ab initio quantum chemical calculations[J].J Mol Struc:THEOCHEM,2002,617:169-175.
    [19] SOLOMON R V, VEERAPANDIAN P, VEDHA S A, et al. Tuning nonlinear optical and optoelectronic properties of vinyl coupled triazene chromophores:A density functional theory and time-dependent density functional theory investigation[J].J Phys Chem A,2012,116(18):4667-4677.
    [20] TENG C C, MAN H T. Simple reflection technique for measuring the electro-optic coefficient of poled polymers [J].Appl Phys Lett,1990,56(18):1734-1736.