RP-3航空煤油层流燃烧特性的影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect factor of laminar burning characteristics of RP-3 kerosene
  • 作者:张存杨 ; 曾文 ; 陈保东 ; 张静 ; 陈潇潇 ; 刘爱虢 ; 刘宇
  • 英文作者:ZHANG Cunyang;ZENG Wen;CHEN Baodong;ZHANG Jing;CHEN Xiaoxiao;LIU Aiguo;LIU Yu;Faculty of Aerospace Engineering,Shenyang Aerospace University;
  • 关键词:层流燃烧速率 ; 燃烧稳定性 ; RP-3航空煤油 ; 火焰发展特性 ; 燃烧压力
  • 英文关键词:laminar burning velocity;;burning stability;;RP-3kerosene;;flame propagation characteristics;;burning pressure
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:沈阳航空航天大学航空航天工程学部;
  • 出版日期:2018-01-18 08:21
  • 出版单位:航空动力学报
  • 年:2018
  • 期:v.33
  • 基金:国家自然科学基金(51376133,51676132);; 预研基金(XXQTXX)
  • 语种:中文;
  • 页:HKDI201801024
  • 页数:11
  • CN:01
  • ISSN:11-2297/V
  • 分类号:191-201
摘要
为了获得RP-3航空煤油燃烧特性的主要影响因素,在定容燃烧弹中试验测量了初始温度范围为390~450K、初始压力范围为0.1~0.7MPa、当量比范围为0.6~1.5条件下RP-3航空煤油的火焰发展特性,并分析了RP-3航空煤油火焰稳定性与层流燃烧速率的主要影响因素。结果表明:无拉伸火焰传播速率与层流燃烧速率随初始压力的升高或初始温度的降低而逐渐降低,但燃烧压力峰值却逐渐升高;随当量比的升高,无拉伸火焰传播速率、层流燃烧速率与燃烧压力峰值呈现先增加后降低的趋势,无拉伸火焰传播速率与层流燃烧速率在当量比为1.2时达到最大,燃烧压力峰值在当量比为1.0达到最大;马克斯坦长度随当量比的增加或初始压力的升高而逐渐变小,火焰前锋面稳定性变差,但是,初始温度对马克斯坦长度的影响不确定。
        In order to gain the main effect factors of burning characteristics of RP-3 kerosene,the flame propagation characteristics of RP-3 kerosene over the initial temperature range of 390-450 K,the initial pressure range of 0.1-0.7 MPa,and the equivalence ratio range of 0.6-1.5 were measured in the constant volume combustion bomb.Furthermore,the main effect factors of the flame stability and laminar burning velocity of RP-3 kerosene were investigated.The results showed that increasing the initial pressure or decreasing the initial temperature led to a decrease in the unstretched flame propagation velocity and the laminar burning velocity,and an increase in the maximum burning pressure of RP-3 kerosene.With the increase of equivalence ratio,the unstretched flame propagation velocity,the laminar burning velocity and the maximum burning pressure increased initially and then decreased gradually.The highest unstretched flame propagation velocity and the laminar burning velocity were measured when the equivalence ratio was 1.2 and the maximum burning pressure was measured when the equivalence ratio was 1.0.Furthermore,increasing the equivalence ratio or the initial pressure decreased the Markstein length and the stability of the flamefront.However,the effect of the initial temperature on the Markstein length was uncertain.
引文
[1]张弯洲,乐嘉陵,杨顺华,等.马赫数为4的超燃发动机碳氢燃料点火试验[J].航空动力学报,2013,28(4):800-806.ZHANG Wanzhou,LE Jialing,YANG Shunhua,et al.Experiments on hydrocarbon fuel ignition for scramjet at Mach 4[J].Journal of Aerospace Power,2013,28(4):800-806.(in Chinese)
    [2]曾文,李海霞,马洪安,等.RP-3航空煤油模拟替代燃料的化学反应详细机理[J].航空动力学报,2014,29(12):2810-2816.ZENG Wen,LI Haixia,MA Hongan,et al.Detailed chemical reaction mechanism of surrogate fuel for RP-3kerosene[J].Journal of Aerospace Power,2014,29(12):2810-2816.(in Chinese)
    [3]EDWARDS T,MAURICE L Q.Surrogate mixtures to represent complex aviation and rocket fuels[J].Journal of Propulsion and Power,2001,17(2):461-466.
    [4]RIESMEIR E,HONNET S,PETERS N.Flamelet modeling of pollutant formation in a gas turbine combustion chamber using detailed chemistry for a kerosene model fuel[J].Journal of Engineering for Gas Turbines and Power,2004,126(4):899-905.
    [5]KUMAR K,SUNG C J,HUI X.Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J].Fuel,2011,90(3):1004-1011.
    [6]BOSSCHAART K J,GOEY L P H D.The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method[J].Combustion and Flame,2004,136(3):261-269.
    [7]WEISS M,ZARZALIS N,SUNTZ R.Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames[J].Combustion and Flame,2008,154(4):671-691.
    [8]GU X J,HAQ M Z,LAWES M,et al.Laminar burning velocity and Markstein numbers of methane-air mixtures[J].Combustion and Flame,2000,121(1):41-58.
    [9]PARSINEJAD F,ARCARI C,METGHALCHI H.Flame structure and burning speed of JP-10air mixtures[J].Combustion Science and Technology,2006,178(5):975-1000.
    [10]VUKADINOVIC V,HABISREUTHER P,ZARZALIS N.Influence of pressure and temperature on laminar burning velocity and Markstein number of kerosene Jet A-1:experimental and numerical study[J].Fuel,2013,111(3):401-410.
    [11]FAR E K,PARSINEJAD F,METGHALCHI H.Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures[J].Fuel,2010,89(5):1041-1049.
    [12]FAR E K,MOGHADDAS A,METGHALCHI H,et al.The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames[J].Fuel,2011,90(4):1476-1486.
    [13]曾文,陈欣,马洪安,等.RP-3航空煤油层流燃烧特性的实验[J].航空动力学报,2015,30(12):2888-2896.ZENG Wen,CHEN Xin,MA Hongan,et al.Experiment study on laminar burning characteristics of RP-3kerosene[J].Journal of Aerospace Power,2015,30(12):2888-2896.(in Chinese)
    [14]HU E J,HUANG Z H,HE J J,et al.Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J].International Journal of Hydrogen and Energy,2009,34(11):4876-4888.
    [15]郑东,于维铭,钟北京.RP-3航空煤油替代燃料及其化学反应动力学模型[J].物理化学学报,2015,31(4):636-642.ZHENG Dong,YU Weiming,ZHONG Beijing.RP-3aviation kerosene surrogate fuel and the chemical reaction kinetic model[J].Acta Physico-Chimica Sinica,2015,31(4):636-642.(in Chinese)
    [16]徐佳琪,郭俊江,刘爱科,等.RP-3替代燃料自点火燃烧机理构建及动力学模拟[J].物理化学学报,2015,31(4):643-652.XU Jiaqi,GUO Junjiang,LIU Aike,et al.Construction of autoignition mechanisms for the combustion of RP-3surrogate fuel and kinetics simulation[J].Acta Physico-Chimica Sinica,2015,31(4):643-652.(in Chinese)
    [17]朱玉红,余彩香,李子木,等.航空燃料超临界热裂解过程中焦炭的形成[J].石油化工,2006,35(12):1151-1155.ZHU Yuhong,YU Caixiang,LI Zimu,et al.Formation of coke in thermal cracking of jet fuel under super critical conditions[J].Petrochemical Technology,2006,35(12):1151-1155.(in Chinese)
    [18]JIANG R P,LIU G Z,ZHANG X W,et al.Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels[J].Energy and Fuels,2013,27(5):2563-2577.