单宁为模板水热合成纳米TiO_2及其对铀的吸附
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrothermal Synthesis of Nano-TiO_2 Using Tannins as Templates and Its Adsorption Performance for Uranium
  • 作者:范圣茜 ; 骆微 ; 周建飞 ; 廖学品 ; 石碧
  • 英文作者:FAN Sheng-qian;LUO Wei;ZHOU Jian-fei;LIAO Xue-pin;SHI Bi;Department of Biomass Science and Engineering, Sichuan University;National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University;Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University;
  • 关键词:纳米二氧化钛 ; ; 吸附 ; 单宁 ; 水热合成 ; 水处理技术
  • 英文关键词:nano-titanium dioxide;;uranium;;adsorption;;tannin;;hydrothermal synthesis;;water treatment
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:四川大学生物质科学与工程系;制革清洁技术国家工程实验室;皮革化学与工程教育部重点实验室;
  • 出版日期:2019-04-13 14:49
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划(2017YFB0308500)
  • 语种:中文;
  • 页:JXHG201908025
  • 页数:10
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:156-165
摘要
利用单宁可与金属离子形成稳定配合物的性质,以不同的单宁为模板,水热合成了纳米二氧化钛(T-NTO),用FTIR、XRD、BET、SEM、TEM对合成的T-NTO的结构及形貌进行表征,并考察其对铀的吸附性能。结果表明:以单宁为模板水热法合成可以明显提高纳米二氧化钛的比表面积,从而提高其吸附容量;T-NTO对铀有较强的吸附能力,并且以不同单宁为模板制备的T-NTO对铀(UO_2~(2+))的吸附容量存在明显差异,杨梅单宁为模板合成的纳米二氧化钛(BT-NTO)粒径最小,比表面积达到96.61 m~2/g;T-NTO对铀的吸附等温线符合Langmuir方程,BT-NTO在318 K时对铀的吸附容量高达0.7054 mmol/g;而吸附动力学符合准二级动力学方程,吸附速率较快;共存阳离子Zn~(2+)、Mg~(2+)、Pb~(2+)、Mn~(2+)、Na~+及共存阴离子Cl~-、SO_4~(2-)、CO_3~(2-)对BT-NTO吸附铀的影响很小,而F–的影响较大,但可通过引入Al~(3+)来减小F–的影响。解吸实验表明:0.1 mol/L的HNO_3溶液可使吸附的铀解吸下来,BT-NTO可多次重复使用。
        Nano-titanium dioxide(T-NTO) was prepared by hydrothermal synthesis using different tannins as templates. The structure and morphology of the samples were characterized by FTIR, XRD, BET, SEM and TEM. Its adsorption performances for uranium were investigated. The results showed hydrothermal synthesis using tannin as template obviously improved the specific surface area and adsorption capacity of T-NTO. It was found that T-NTO had a strong adsorption capacity for uranium, and the adsorption capacity of the T-NTO samples prepared using different tannins as templates for uranium(UO_2~(2+)) was significantly different. The nano-titanium dioxide(BT-NTO) prepared using bayberry tannin as template had the smallest particle size and its specific surface area was up to 96.61 m~2/g. Further more, the adsorption process of uranium by T-NTO was described by Langmuir isothermal model, and the adsorption capacity of BT-NTO to uranium reached 0.7054 mmol/g at 318 K. The adsorption kinetics followed the pseudo-second-order kinetic equation. In addition, coexisting ions, including Zn~(2+), Mg~(2+), Pb~(2+), Mn~(2+), Na~+, Cl~–, SO_4~(2–) and CO_3~(2–) had little effect on the adsorption capacity of uranium by BT-NTO, while F– had greater effect. However,the influence of F– could be reduced by introducing Al~(3+). The BT-NTO could be regenerated with 0.1 mol/L HNO_3 solution, and it could be reused many times without obvious decrease of adsorption capacity.
引文
[1]Brown S T,Anirban B,Xin D,et al.Uranium isotope fractionation by abiotic reductive precipitation[J].Proceedings of the National Academy of Sciences,2018,115(35):8688-8693.
    [2]Li Y,Li L,Chen T,et al.Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(Ⅵ)removal[J].Chemical Engineering Journal,2018,347:407-414.
    [3]Canner A J,Pepper S E,Hayer M,et al.Removal of radionuclides from a HCl steel decontamination stream using chelating ion exchange resins-Initial studies[J].Progress in Nuclear Energy,2017,104:271-279.
    [4]Khayet,M.Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes[J].Desalination,2013,321:60-66.
    [5]Zhang H,Dai Z R,Sui Y,et al.Adsorption of U(Ⅵ)from aqueous solution by magnetic core-dual shell Fe3O4@PDA@TiO2[J].Journal of Radioanalytical and Nuclear Chemistry,2018,317(1):613-624.
    [6]Wang J J,He B H,Wei X Y,et al.Sorption of uranyl ions on TiO2:Effects of pH,contact time,ionic strength,temperature and HA[J].Journal of Environmental Sciences,2019,75:115-123.
    [7]Peng L,Ni Y,Wei X,et al.Removal of U(Ⅵ)from aqueous solution using TiO2 modifiedβ-zeolite[J].Radiochimica Acta,2017,105(12):1005-1013.
    [8]Chen X,Mao S S.Titanium dioxide nanomaterials:Synthesis,properties,modifications,and applications[J].Cheminform,2007,107(7):2891-2959.
    [9]Ross A R S,Ikonomou M G,Orians K J.Characterization of dissolved tannins and their metal-ion complexes by electrospray ionization mass spectrometry[J].Analytica Chimica Acta,2000,411(1/2):91-102.
    [10]Shi Bi(石碧),Di Ying(狄莹).Plant polyphenol(植物多酚)[M].Beijing:Science Press,2000.
    [11]Du Xiao(杜晓).Fractionation of larch bark proanthocyanidins and the research on fine application of fractions[D].Chengdu:Sichuan University(四川大学),2006.
    [12]Liao Xuepin(廖学品).Preparation of adsorption based on collagen fibers and investigations of their adsorption characteristics[D].Chengdu:Doctoral Dissertation of Sichuan University,2004.
    [13]Lin Huaxiang(林华香),Wang Xuxu(王绪绪),Fu Xianzhi(付贤智).Properties and distribution of the surface hydroxyl groups of TiO2[J].Progress in Chemistry(化学进展),2007,19(5):665-670.
    [14]Linghu W S,Sun Y,Yang H,et al.Macroscopic and spectroscopic exploration on the removal performance of titanate nanotubes towards Zn(Ⅱ)[J].Journal of Molecular Liquids,2017,244:146-153.
    [15]Liu Jianliang(刘建亮),Luo Mingbiao(罗明标),Yuan Zizun(袁自遵),et al.Synthesized of titanatenanowhiskers and adsorption of Th(IV)[J].Journal of Functional Materials(功能材料),2013,44(23):3496-3501.
    [16]Chen Z T,Huang Y,Liu Y Y,et al.Enhanced photocatalytic activity based on TiO2 hollow hierarchical microspheres/reduced graphene hybrid[J/OL].Materials Research Express,2019,6(2):DOI:10.1088/2053-1591/aaedd1.
    [17]Hashida K,Ohara S,Makino R.Base-catalyzed reactions of procyanidin B3:formation of a novel catechinic acid-catechin dimer[J].Journal of Wood Chemistry and Technology,2006,26(2):125-140.
    [18]Bacelo H A M,Santos S C R,Botelho C M S,et al.Tannin-based biosorbents for environmental applications-a review[J].Chemical Engineering Journal.2016,303:575-587.
    [19]Li Feng(李峰),Hu Zheng(胡征),Jing Su(景苏),et al.Controlled growth and self-assembly of nanoparticles[J].Chinese Journal of Inorganic Chemistry(无机化学学报),2001,17(3):315-324.
    [20]Wen J,Li Q,Li H,et al.Nano-TiO2 imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(Ⅵ)recovery[J].Industrial&Engineering Chemistry Research,2018,57(6):1826-1833.
    [21]Lamb A C M,Grieser F,Healy T W.The adsorption of uranium(Ⅵ)onto colloidal TiO2,SiO2 and Carbon Black[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2016,499:156-162.
    [22]Paschalidou P,Liatsou I,Pashalidis I,et al.Effect of surface and textural characteristics on uranium adsorption by nano-porous titania[J].Journal of Radioanalytical&Nuclear Chemistry,2017,314(2):1141-1147.
    [23]Yang Lanhao(杨兰浩),Hu Bin(胡斌),Jiang Zucheng(江祖成),et al.Adsorption behavior of metal ions on TiO2 powder of different crystal structure and particle diameter[J].Journal of Chinese Rare Earth Society(中国稀土学报),2004,22(5):704-707.
    [24]Triki M,Tanazefti H,Kochkar H.Design of beta-cyclodextrin modified TiO2 nanotubes for the adsorption of Cu(Ⅱ):Isotherms and kinetics study[J].Journal of Colloid&Interface Science,2017,493:77-84.
    [25]Liu P,Yuan N,Xiong W,et al.Removal of U(Ⅵ)from aqueous solution using TiO2 modified beta-zeolite[J].Radiochimica Acta,2017,105(12):1005-1013.
    [26]Wang Likun(王丽坤),Li Li(李丽),Xin Cui(辛翠),et al.Kinetics of adsorption of low concentration phenol in water by activated pyrolytic tire char[J].Journal of PLA University of Science and Technology(natural science edition)(解放军理工大学学报:自然科学版),2012,13(2):209-213.
    [27]Amayri S,Arnold T,Reich T,et al.Spectroscopic characterization of the uranium carbonate andersonite Na2Ca[UO2(CO3)3]x6H2O[J].Environmental Science&Technology,2004,38(22):6032-6036.
    [28]Song S A,Huang S Y,Zhang R,et al.Simultaneous removal of U(Ⅵ)and humic acid on defective TiO2-x investigated by batch and spectroscopy techniques[J].Chemical Engineering Journal,2017,325:576-587.
    [29]Khamirchi R,Hosseini B A,Alahabadi A,et al.Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples[J].Ecotoxicology and Environmental Safety,2018,150:136-143.
    [30]Cheng Yuanmei(程远梅),Sun Xia(孙霞),Liao Xuepin(廖学品),et al.Adsorption of uranium from wastewater containing fluorine and uranium by collagen fiber immobilized titanium[J].Journal of Chemical Industry and Engineering(化工学报),2011,62(2):386-392.