球轴承多体弹性流体动力润滑研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Elastohydrodynamic Lubrication Study on Multiple Rolling Elements of Ball Bearing
  • 作者:刘宇 ; 马志飞 ; 孟凡明
  • 英文作者:LIU Yu;MA Zhifei;MENG Fanming;The State Key Laboratory of Mechanical Transmission,Chongqing University;Aerospace System Engineering Shanghai;Shanghai Key Laboratory of Spacecraft Mechanism;
  • 关键词:多体润滑 ; 球轴承 ; 承载力 ; 中心膜厚 ; FFT
  • 英文关键词:multiple elements lubrication;;ball bearing;;load-carrying capacity;;central film thickness;;FFT
  • 中文刊名:MCXX
  • 英文刊名:Tribology
  • 机构:重庆大学机械传动国家重点实验室;上海宇航系统工程研究所;上海市空间飞行器机构重点实验室;
  • 出版日期:2019-06-03 14:50
  • 出版单位:摩擦学学报
  • 年:2019
  • 期:v.39;No.191
  • 基金:国家重点研发计划(2017YFB1300700);; 国家自然科学基金项目(51775067)资助~~
  • 语种:中文;
  • 页:MCXX201903004
  • 页数:8
  • CN:03
  • ISSN:62-1095/O4
  • 分类号:31-38
摘要
为准确分析球轴承的润滑性能,对其多个滚动体与外圈间的弹性流体动力润滑(EHL)特性进行了研究.以深沟球轴承为例,建立了球轴承多个滚动体同时(多体)润滑的EHL模型,基于快速傅里叶变换(FFT)技术和低松弛迭代法对该模型进行求解,研究了多体润滑下中心滚动体的EHL性能,并和仅中心滚动体(单体)与外圈润滑的EHL特性进行了对比.数值结果表明:与单体润滑相比,多体润滑下中心滚动体的油膜压力减小,二次压力峰向入口区移动.相对单体润滑的中心膜厚,多体润滑下中心滚动体的中心膜厚会增加;中心滚动体的径向位移由10μm增大到30μm时,多体润滑下中心滚动体的承载力相对其单体润滑承载力的下降百分比由5.99%变化到9.70%.
        In order to accurately analyze the lubrication performance for a ball bearing, the elastohydrodynamic lubrication(EHL) performance for multiple rolling elements(MRES) in the ball bearing was studied. Taking deep groove ball bearing as an example, an EHL model for the MRES was established and solved with the Fast Fourier Transform(FFT) technique and low relaxation iteration method. Then, the EHL performance for the central rolling element among the MRES was analyzed and compared with the EHL characteristics for the single rolling element(SRE). The numerical results show that, compared with the SRE EHL, the film pressure of the central rolling element among the MRES decreased, and the secondary pressure peak moved to the inlet region. Moreover, compared with the SRE EHL, the central film thickness of the central rolling element among the MRES increased, and the load-carrying capacity of the central rolling element among the MRES decreased by from 5.99% to 9.70% when the radial displacement of the central rolling element increased from 10 μm to 30 μm.
引文
[1]Pu Chao,Du Minggang,Meng Fanming,et al.Analysis of elastoplastic contact performances for deep groove ball bearing considering roughness[J].Journal of Chongqing University(Natural Science Edition),2017,40(10):12-22(in Chinese)[浦超,杜明刚,孟凡明,等.计入粗糙度的深沟球轴承弹塑性接触性能分析[J].重庆大学学报:自然科学版,2017,40(10):12-22].
    [2]Zhang J,Fang B,Hong J,et al.Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing[J].Tribology International,2017,114:365-372.doi:10.1016/j.triboint.2017.04.029.
    [3]Deng S,Hua L,Han X,et al.Finite element analysis of fatigue life for deep groove ball bearing[J].Proceedings of the Institution of Mechanical Engineers Part L:Journal of Materials Design&Applications,2013,227(1):70-81.
    [4]Deng C,Yang G H.Finite element analysis of 6300 deep groove ball bearing[J].Computer Aided Drafting,Design and Manufacturing,2013,23(3):41-45.
    [5]Xu Tao,Zhao Yujie,Shao Qing,et al.Analysis of static contact characteristics of angular contact ball bearing under combined loads[J].Journal of Jilin University(Engineering and Technology Edition),2017,47(4):1114-1120(in Chinese)[徐涛,赵玉洁,邵晴,等.联合载荷下角接触球轴承静态接触特性分析[J].吉林大学学报(工学版),2017,47(4):1114-1120].
    [6]Knauf S,Frei S,Richter T,et al.Towards a complete numerical description of lubricant film dynamics in ball bearings[J].Computational Mechanics,2014,53(2):239-255.doi:10.1007/s00466-013-0904-1.
    [7]Wang J,Yang P R,Lubrecht A A,et al.Numerical investigation of thermal EHL in elliptical contact under impact motion[J].Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2015,229(9):1125-1131.doi:10.1177/1350650115574534.
    [8]Shi X J,Wang L Q,Mao Y Z,et al.Coupling study on dynamics and TEHL behavior of high-speed and heavy-load angular contact ball bearing with spinning[J].Tribology International,2015,88:76-84.doi:10.1016/j.triboint.2015.03.011.
    [9]Wheeler J D,Fillot N,Vergne P,et al.On the crucial role of ellipticity on EHD film thickness and friction[J].Proceedings of the Institution of Mechanical Engineers Part J:Journal of Engineering Tribology,2016,230(12):1503-1515.doi:10.1177/1350650116637583.
    [10]Zhang Y G,Wang W Z,Zhang S G,et al.Experimental study of EHL film thickness behaviour at high speed in ball-on-ring contacts[J].Tribology International,2017,113:216-223.doi:10.1016/j.triboint.2017.02.040.
    [11]Wang X,Liu Y,Zhu D.Numerical solution of mixed thermal elastohydrodynamic lubrication in point contacts with threedimensional surface roughness[J].Journal of Tribology,2017,139(1):011501.doi:10.1115/1.4032963.
    [12]Lu Zunyou,LüYanjun,Zhang Yongfang,et al.Micro thermal elastohydrodynamic lubrication analysis of angular contact ball bearing considering thermal elastic deformation[J].Tribology,2018,38(3):299-308(in Chinese)[路遵友,吕延军,张永芳,等.考虑热弹性变形的角接触球轴承微观热弹流分析[J].摩擦学学报,2018,38(3):299-308].doi:10.16078/j.tribology.2018.03.007.
    [13]Liu Guangyuan,Guo Feng,Li Xinming.Point contact elastohydrodynamic lubrication in confined gap[J].Journal of Mechanical Engineering,2014,50(13):122-128(in Chinese)[刘广媛,郭峰,栗心明.限制间隙条件下的点接触EHL特性分析[J].机械工程学报,2014,50(13):122-128].
    [14]Harris T A,Kotzalas M N.Rolling bearing analysis fifth edition:Essential concepts of bearing technology[M].Boca Raton:CRCPress,2007.
    [15]Liu S B,Wang Q,Liu G.A versatile method of discrete convolution and FFT(DC-FFT)for contact analyses[J].Wear,2000,243(1):101-111.