两种微藻对分散橙S-4RL胁迫的光合活性响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Disperse Orange S-4RL on the Photosynthetic Activity of Two Freshwater Algae
  • 作者:李雪妍 ; 李玲 ; 王焕双
  • 英文作者:LI Xue-yan;LI Ling;WANG Huan-shuang;College of Chemical Engineering, Huaqiao University;
  • 关键词:分散橙S-4RL ; 胁迫 ; 小球藻 ; 水华微囊藻 ; 光合活性
  • 英文关键词:Disperse Orange S-4RL;;stress;;Chlorella vulgaris;;Microcystis flos-aquae;;photosynthetic activity
  • 中文刊名:SCAN
  • 英文刊名:Journal of Hydroecology
  • 机构:华侨大学化工学院;
  • 出版日期:2019-03-15
  • 出版单位:水生态学杂志
  • 年:2019
  • 期:v.40
  • 基金:福建省中青年教师教育科研项目(JAT160029);; 石狮市科技计划项目(2016FS21)
  • 语种:中文;
  • 页:SCAN201902011
  • 页数:9
  • CN:02
  • ISSN:42-1785/X
  • 分类号:75-83
摘要
探究环境中分散橙S-4RL对水生藻类的污染胁迫,为评估合成染料对水生生态环境的风险提供参考依据。分散橙S-4RL(C.I.分散橙30)纯度≥95%,水华微囊藻(Microcystisflos-aquae)、蛋白核小球藻(Chlorella pyrenoidosa)按照OECD 201藻类生长试验规定培养。最终染毒浓度分别为0.625、1.25、2.5、5、10 mg/L,使用多脉冲调制叶绿素荧光仪每24 h测定叶绿素a含量1次,其他叶绿素荧光参数每隔48 h测定1次。结果表明:(1)在试验浓度范围内,分散橙S-4RL对蛋白核小球藻的叶绿素a含量具有促进作用,其中最低浓度(0.625 mg/L)处理组在第6天达到了空白对照组的115%;而分散橙S-4RL对水华微囊藻的叶绿素a含量均呈现抑制作用。(2)分散橙S-4RL对蛋白核小球藻和水华微囊藻光合反应过程最大光能转换效率(F_v/F_m),PSⅡ的潜在活性(F_v/F_0)以及初始斜率(α)影响不大;但蛋白核小球藻和水华微囊藻的最大电子传递速率(ETR_(max))和半饱和光强点(I_k)均随着分散橙S-4RL浓度增加而增加,在试验第5天,水华微囊藻的ETR_(max)和I_k均为空白对照组的119%。2种微藻对分散橙S-4RL的胁迫敏感性不同,但都能提高光合活性来缓解胁迫。
        Dyes are increasingly selected based on resistance to light, washing and perspiration, and to meet consumer demand for color diversity. However, dyes inevitable enter the aquatic environment during production and use, resulting in risk to aquatic ecosystems. To evaluate the toxicity of Disperse Orange S-4 RL(DO S-4 RL) to freshwater algae, we investigated the effects of low level exposure to DO S-4 RL on the photosynthetic activity of Chlorella pyrenoidosa(green alga) and Microcystis flos-aquae(Cyanophyta) using a color pulse amplitude modulation chlorophyll fluorimeter(Phyto-PAM). The study provides a reference for risk evaluation of dyes in the aquatic environment. Chlorella pyrenoidosa and Microcystis flos-aquae were cultured following OECD guidelines and algae in logarithmic phase were exposed to different concentrations of DO S-4 RL(0.625, 1.25, 2.5, 5, 10 mg/L). Each treatment and a control were run in triplicate. The test duration was six days and the content of chlorophyll-a in each group was measured each 24 hours and chlorophyll fluorescence parameters were determined each 48 hours. Exposure to DO S-4 RL increased the chlorophyll-a content of Chlorella pyrenoidosa, especially in the low concentration(0.625 mg·L~(-1)) group, in which the chlorophyll-a content was 115% of that in the control group on day 6. However, DO S-4 RL decreased the chlorophyll-a content of Microcystis flos-aqua. Exposure to DO S-4 RL had no significant effect on the maximum photochemical quantum yield(F_v/F_m), the potential activity(F_v/F_0) or the initial slope(α) of Chlorella pyrenoidosa and Microcystis flos-aquae. With increased DO S-4 RL concentration, the values of ETR_(max) and I_k of Chlorella pyrenoidosa and Microcystis flos-aquae increased. The values of ETR_(max) and I_k of Microcystis flos-aquae in all treatments were 119% of those in the control group on day 5. The sensitivities of the two microalgae species to DO S-4 RL were different, but both increase photosynthetic activity to relieve the stress.
引文
陈元, 赵洋甬, 潘双叶, 等, 2009. PHYTO-PAM对浮游植物中叶绿素的分类测定[J]. 现代科学仪器, (4):100-103.
    党亚爱, 王国栋, 辛宝平, 等, 2003. 几种染料抑制斜生栅藻生长的毒性效应[J]. 西北植物学报, 23(2):332-335.
    董妍玲, 潘学武, 2010. 从基因角度解读蓝藻细胞壁的结构和功能[J]. 生物学通报,(12):14-17.
    付翔, 翟红昌, 刘诚刚, 等, 2014. 应用非光化学淬灭初始变化率作为浮游植物光保护能力指标的可行性[J]. 生态学报, 34(14): 3859-3865.
    郐安琪, 2016. 重金属Cd2+对五种常见淡水浮游藻类的毒性效应研究[D].武汉:长江科学院.
    李晓, 冯伟, 曾晓春, 等, 2006. 叶绿素荧光分析技术及应用进展[J]. 西北植物学报, 26(10):2186-2196.
    李晓征, 彭峰, 徐迎春, 等, 2005. 不同遮荫下多脉青冈和金叶含笑幼苗叶片的气体交换日变化[J]. 浙江林学院学报, 22(4): 380-384.
    刘兴剑, 刘小巍, 孙起梦, 2005. 阔瓣含笑种内类型划分及苗期试验[J]. 江苏林业科技, 32(4): 15-17.
    廖柏寒, 刘俊, 周航, 等, 2010. Cd胁迫对大豆各发育阶段生长及生理指标的影响[J]. 中国环境科学, 30(11):1516-1521.
    潘国权, 王国祥, 李强, 等, 2007. 浊度对苦草(Vallisnerianatans)幼苗生长的影响[J]. 生态环境, 16(3) :762-766.
    沈宏, 周培疆, 2002. 环境有机污染物对藻类生长作用的研究进展[J]. 水生生物学报,(5):529-535.
    钱永强, 周晓星, 韩蕾, 等, 2011.3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应[J]. 北京林业大学学报, 33(6):8-14.
    石英, 杜青平, 谢树莲, 2007. 1,4-二氯苯对蛋白核小球藻的毒性效应[J]. 环境科学研究, 20(3): 133-136.
    王焕双, 李玲, 吴贵江, 等, 2014. 分散紫HFRL和分散橙S-4RL对大型溞的单一与联合急性毒性效应[J]. 环境与健康杂志, 31(6):483-485.
    王锦旗, 宋玉芝, 薛艳, 2015. 紫外辐射对菹草(Potamogeton crispus)成株快速光响应曲线的影响[J]. 湖泊科学, 27(3):451-458.
    王帅, 梁英, 田传远, 2009. Cd2+胁迫对6株微藻生长及叶绿素荧光特性的影响[J]. 海洋湖沼通报, (3):155-166.
    王帅, 梁英, 姜伟, 2011. 不同Cd2+浓度与磷酸盐浓度交互作用对小球藻和微绿球藻生长及叶绿素荧光特性的影响[J]. 海洋湖沼通报,(1):50-62.
    王朝晖, 杨雪, 梁瑜, 2015. 赤潮异弯藻对有机氮的利用能力[J]. 海洋环境科学, 34(3):343-346.
    Azizullah A, Peter R, Donat-Peter H,2011. Ecotoxicological Evaluation of Wastewater Samples from Gadoon Amazai Industrial Estate (GAIE), Swabi, Pakistan[J]. International Journal of Environmental Science, 5(1): 996-983.
    Azizullah A, Peter R, Donat-Peter H, 2015. Effects of long-term exposure to industrial wastewater on photosynthetic performance of Euglena gracilis measured through chlorophyll fluorescence[J]. Journal of Applied Phycology, 27:303–310.
    Baker N R, 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59:89-113.
    Boxall A B A, Kolpin D W, Halling S B, et al, 2003. Peer reviewed: are veterinary medicines causing environmental risks[J]. Environmental Science and Technology, 37(15): 286A-294A.
    Danilov R A, Ekelund N G A, 1999. Influence of waste water from the paper industry and UV-B radiation on the photosynthetic efficiency of Euglena gracilis[J]. Journal of Applied Phycology, 11: 157-163.
    Diana M E, Slijkerman, Moreira-Santos M, 2005. Functional and structural impact of linuron on a freshwater community of primary producers: the use of immobilized algae [J]. Environmental Toxicology and Chemistry, 24(10): 2477-248.
    Ekelund, N G A, Aronsson K A, 2007. Changes in chlorophyll a fluorescence in Euglena gracilis and Chlamydomonas reinhardtii after exposure to wood-ash[J]. Environmental and Experimental Botany, 59:92-98.
    Ferraz E R A, Umbuzeiro G A, Almeida G D, et al, 2011. Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test[J]. Environmental Toxicology, 26(5):489-497.
    Estrada F, Escobar A, Romero-Bravo S, et al, 2015. Fluorescence phenoltyping in blueberry breeding for genotype selection under drought conditions, with or without heat stress[J]. Scientia Horti-culturae, 181: 147-161.
    Fabio H F, Eduardo B, Daisy M F S, et al, 2015. Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells[J]. Reproductive Toxicology, 53(1):75-81.
    Genty B, Briantais J M, Baker N R, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochimica et Biophysica Acta (BBA) -General Subjects, 990(1): 87-92.
    Guilherme J Z, Glauco P S, 2015. Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples[J]. Journal of Chromatographic Science, 53(8):1-8.
    Halling-Sorensen B, 2000. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 40(7): 731-739.
    Ihnken S, Eggert A, Beardall J, 2010. Exposure times in rapid light curves affect photosynthetic parameters in algae [J]. Aquatic Botany, 93(3): 185-194.
    Jinseok B, Harold S F, 2007. Aquatic toxicity evaluation of new direct dyes to the Daphnia magna[J]. Dyes and Pigments, 73(1):81-85.
    Jones R I, 1978. Adaptations to fluctuating irradiance by natural phytoplankton communities [J]. Limnology and Oceanography, 23(5): 920-926.
    Khalida A Z,Youcef B, Zitouni, Z, et al, 2012. Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus[J]. IJRRAS, 12(2):304-314.
    Mcmullan G, Meehan C, Conneely A, et al, 2001. Microbial decolourisation and degradation of textile dyes[J]. Applied Microbiology and Biotechnology, 56(1-2):81-88.
    OECD, 2006. Alga,OECD Guideline 201 for the Testing of Chemicals. Growth Inhibition Test[S]. Paris, France:201(1):1-25.
    Perona E, 1991. Alteration of dinitrogen fixing and metabolism in cyanobacterium Anabaena PCC7119 by phospharmidon [J]. Environmental and Botany, 31(4): 479-488.
    Santra K T, Martin L, Agnès F M, 2015. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry[J]. Aquatic Toxicology, 165:160–171.
    Schreiber U, Bilger W, Neubaucer C, 1994. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis [M]//Schulze E D. Ecophysiology of photosynthesis.Berlin: Springer Berlin Heidelberg: 49-70.
    Stebbing A R D, 1982. Hormesis-the stimulation of growth by low levels of inhibitors[J]. Science of Total Environment, 22(3):213-234.
    Tom B, Sara C, 1999. Algal growth on organic compounds as nitrogen sources[J]. Journal of Plankton Research, 21(8):1423-1437.
    Vander Z F, Lettinga G, Field J, et al, 2000. Azo dye decolourisation by anaerobic granular sludge[J]. Chemosphere,44(2001):1169-1176.
    Wan J J, Guo P Y, Peng, X, et al,2015. Effect of erythromycin exposure on the growth: antioxidant system and photosynthesis of Microcystis flos-aquae[J]. Journal of hazardous materials, 283:778–786.
    Wang G, Chen K, Chen L, et al,2008. The involvement of the antioxidant system in protection of desert Cyanobacterium nostoc sp. against UV-B radiation and the effects of exogenous antioxidants[J]. Ecotoxicology and Environmental Safety, 69(1):150-157.
    Wang M X, Zhang Y X, Guo P Y, 2017. Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae[J]. Aquatic Toxicology, 186:67-76.
    White A J, Critchley C,1999. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynthesis Research, 59(1): 63-72.
    Xia Y L, Liu D D, Ying D, et al, 2018. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus[J]. Chemosphere,195:437-447.