光纤植入聚酰亚胺薄膜柔性曲率传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polyimide thin film flexible curvature sensor implanted with fiber grating
  • 作者:曲道明 ; 孙广开 ; 孟凡勇 ; 宋言明 ; 祝连庆
  • 英文作者:Qu Daoming;Sun Guangkai;Meng Fanyong;Song Yanming;Zhu Lianqing;Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University;Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University;
  • 关键词:聚酰亚胺薄膜 ; 光纤光栅 ; 曲率传感器 ; 灵敏度
  • 英文关键词:polyimide thin film;;fiber grating;;curvature sensor;;sensitivity
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:北京信息科技大学光纤传感与系统北京实验室;北京信息科技大学北京市光电测试技术重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:教育部“长江学者与创新团队发展计划”(IRT_16R07)项目资助
  • 语种:中文;
  • 页:YQXB201901014
  • 页数:8
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:112-119
摘要
面向软体机器人、变构型飞行器、可穿戴医疗装备等领域的柔性传感应用需求,提出一种植入光纤光栅敏感元件的聚酰亚胺薄膜柔性曲率传感器。研究了柔性薄膜光纤光栅传感器的传感原理、传感结构设计与光栅植入方法,建立了光纤传感、解调及曲率标定装置;实验分析了聚酰亚胺薄膜曲率与光栅中心波长漂移量关系,实验测得光纤光栅植入深度与柔性曲率传感器灵敏度的定量关系,验证了所提出柔性曲率传感器的可行性。研究结果表明,光纤光栅植入聚酰亚胺薄膜的曲率传感器可用于柔性变形传感测量,在0~30.03 m~(-1)的曲率范围内,光纤光栅植入深度为0.1 mm时,聚酰亚胺薄膜曲率传感器达到最大灵敏度50.65 pm/m~(-1)。光纤光栅植入聚酰亚胺薄膜的柔性曲率传感器可应用于柔性传感测量领域。
        Facing to the flexible sensing application requirements in the fields of soft robot, morphing aircraft, wearable medical equipment and etc., a polyimide thin film flexible curvature sensor implanted with fiber grating sensitive element is proposed. The sensing principle, sensing structure design and fiber grating implantation method of the flexible thin film fiber grating sensor are studied. The optical fiber sensing, demodulation and curvature calibration device is established. The relationship between the curvature of the polyimide thin film and the shift of the central wavelength of the fiber grating is analyzed experimentally. The quantitative relationship between the implantation depth of the fiber grating and the sensitivity of the flexible curvature sensor is measured experimentally, which verifies the feasibility of the proposed flexible curvature sensor. The study results show that the polyimide thin film flexible curvature sensor implanted with fiber gratings can be used in flexible deformation sensing measurement. Within the curvature range of 0~30.03 m~(-1), the maximum sensitivity of the polyimide thin film curvature sensor reaches 50.65 pm/m~(-1) when the implanting depth of the fiber gratings is 0.1 mm. The polyimide thin film flexible curvature sensor implanted with fiber grating can be applied in flexible sensing measurement field.
引文
[1] 娄小平, 陈仲卿, 庄炜,等. 非正交FBG柔杆空间形状重构误差分析及标定[J]. 仪器仪表学报, 2017, 38(2): 386-393.LOU X P, CHEN ZH Q, ZHUANG W, et al. Error analysis and calibration for FBG shape reconstruction based on non-orthogonal curvatures[J]. Chinese Journal of Scientific Instrument, 2017, 38(2):386-393.
    [2] CIANCHETTI M, RANZANI T, GERBONI G, et al. Soft robotics technologies to address shortcomings in today′s minimally invasive surgery: The STIFF-FLOP approach[J]. Soft Robotics, 2014(2):122-131.
    [3] 邱亚,深林勇, 胡卫建,等. 缝隙搜救机器人镜体的形状重建和定位方法[J]. 仪器仪表学报, 2015, 36(12): 2782- 2789.QIU Y, SHEN L Y, HU W J, et al. Shape rebuilding and positioning method of search and rescue robot endoscope in ruin crack[J]. Chinese Journal of Scientific Instrument, 2015, 36(12):2782- 2789.
    [4] 戴峰, 常建华, 房久龙,等. 差频产生中红外光源及甲烷气体光谱检测[J]. 电子测量与仪器学报, 2017, 31(9): 1447-1452.DAI F, CHANG J H, FANG J L, et al. Mid-infrared light source based on difference frequency generation and detection of methane gas spectrum[J]. Journal of Electronic Measurement and Instrumentation,2017, 31(9): 1447-1452.
    [5] 肖海, 章亚男, 沈林勇,等. 光纤光栅曲线重建算法中的曲率连续化研究[J]. 仪器仪表学报, 2016, 17(5): 993-999.XIAO H, ZHANG Y N, SHEN L Y, et al. Research on curvature serialization in the curve reconstruction algorithm based on fiber Bragg gratings[J]. Chinese Journal of Scientific Instrument,2016, 17(5):993-999.
    [6] 李红, 祝连庆, 闫光,等. 基于改性型UDP和CIGI的光纤光栅高速解调技术研究[J]. 仪器仪表学报, 2016, 37(1):129-135.LI H, ZHU L Q, YAN G, et al. FBG high speed demodulation technology based on improved UDP and CIGI[J]. Chinese Journal of Scientific Instrument, 2016, 37(1):129-135.
    [7] XU L, MILLER M I, GE J, et al. Temperature-insensitive fiber-optic contact force sensor for steerable catheters[J]. IEEE Sensors Journal, 2016, 16(12):4771- 4775.
    [8] CHEN Y, JIA G, KWOK K W, et al. MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures[J]. Journal of Cardiovascular Magnetic Resonance, 2014, 16(1):1- 2.
    [9] SHIN W, LEE Y L, YU B A, et al. Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber[J]. Optics Communications, 2010, 283(10): 2097- 2101.
    [10] MONZON-HERNANDEZ D, MARTINEZ-RIOS A, TORRES-GOMEZ I, et al. Compact optical fiber curvature sensor based on concatenating two tapers[J]. Optics Letters, 2011, 36(22):4380- 4382.
    [11] CAUCHETEUR C, CHAH K. Simultaneous bend and temperature sensor using tilted FBG[C].International Conference on Optical Fibre Sensors, 2005:5855.
    [12] ZHOU W, ZHOU Y, DONG X, et al. Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer[J]. IEEE Photonics Journal, 2012, 4(3):1051-1057.
    [13] ALLSOP T, BHAMBER R, LLOYD G, et al. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings[J]. Journal of Biomedical Optics, 2012, 17(11):117001.
    [14] LI P, YAN Z, ZHOU K, et al. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor[J]. Optical Engineering, 2013(52):014401- 014401.
    [15] ZHAO Y, WANG C, YIN G, et al. Simultaneous directional curvature and temperature sensor based on a tilted few-mode fiber Bragg grating[J]. Applied Optics, 2018, 57(7):1671-1678.
    [16] HUI L, YANG H, QIAO X, et al. Curvature and temperature measurement based on a few-mode PCF formed M-Z-I and an embedded FBG[J]. Sensors, 2017, 17(8):1725.
    [17] GE J, JAMES A E, XU L, et al. Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2016, 28(20):2237- 2240.
    [18] 黄建明, 张明达. 光纤光栅应变传感器温度补偿[J]. 国外电子测量技术, 2017, 36(5):74-77.HUANG J M, ZHANG M D. Temperature compensation of fiber bragg grating strain sensors[J]. Foreign Electronic Measurement Technology, 2017, 36(5):74-77.
    [19] 曲道明, 孙广开, 李红,等. 变形机翼柔性蒙皮形状光纤传感及重构方法[J]. 仪器仪表学报, 2018,39(1):144-151.QU D M, SUN G K, LI H, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape[J]. Chinese Journal of Scientific Instrument, 2018,39(1):144-151.
    [20] 张润玺, 王贺升, 陈卫东. 仿章鱼软体机器人形状控制[J]. 机器人, 2016, 38(6):754-759.ZHANG R X, WANG H SH, CHEN W D. Shape control for a soft robot inspired by octopus[J]. Robot, 2016, 38(6):754-759.
    [21] 赵欣丹, 张小栋, 侯成刚,等. 光纤光栅传感信号解调技术研究[J]. 电子测量技术, 2017,40(10):1-7.ZHAO X D, ZHANG X D, HOU CH D, et al. Research on fiber Bragg grating demodulation technology[J]. Electronic Measurement Technology, 2017,40(10):1-7.