格子Boltzmann方法研究椭圆截面纤维非稳态过滤的捕集过程与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Non-Steady-State Particle Filtration Process and Performance of Elliptical Fibers Using Lattice Boltzmann Model
  • 作者:黄浩凯 ; 赵海波
  • 英文作者:HUANG Hao-Kai;ZHAO Hai-Bo;State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology;
  • 关键词:Boltzmann气固两相流模型 ; 椭圆截面纤维 ; 非稳态捕集
  • 英文关键词:lattice Boltzmann method;;elliptical fiber;;non-steady-state filtration
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:华中科技大学能源与动力工程学院煤燃烧国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51522603)
  • 语种:中文;
  • 页:GCRB201904014
  • 页数:8
  • CN:04
  • ISSN:11-2091/O4
  • 分类号:93-100
摘要
本文采用格子Boltzmann气固两相流模型模拟了扩散机制下椭圆截面纤维非稳态捕集颗粒过程,包括颗粒枝簇结构的形态和生长过程,并定量分析了纤维周围流场压降和扩散捕集效率随沉积颗粒质量的动态变化规律。当扩散机制主导时,初始阶段颗粒会比较均匀地沉积在椭圆截面纤维表面,后面随着沉积颗粒的枝簇结构长大,改变了流场的分布以及捕集面积,颗粒会更多地在迎风端沉积。对于系统压降的动态变化,不同条件下均满足标准化压降随颗粒沉积质量增加呈指数变化关系。对于椭圆截面纤维捕集效率的动态变化,当增长速度稳定后,不同条件下均满足标准化效率随颗粒沉积质量增加呈线性增长的规律。
        In this article, we use a lattice Boltzmann-cellular automata(LB-CA) probabilistic model to simulate the non-steady-state particle filtration process of elliptical fibers for the diffusion dominant regime including the growth process of the clusters and the cluster structures. The dynamic changes of pressure drop and collection efficiency for the diffusion dominant regime are investigated. When the diffusion mechanism dominated, particles deposit on the elliptical fiber surface uniformly at the initial stage, followed by the clusters grow up, which change the flow field and capture area, and more particles will deposit on the windward side later. Dynamic changes of the standardized pressure drop is exponential to the particle deposition quality at different operation conditions. When the growth rate stabilized, dynamic changes of the standardized capture efficiency is proportional to the particle deposition quality at different operation conditions.
引文
[1] Davies C N. Air Filtration[M]. London:Academic Press,1973
    [2] Brown R C. Air Filtration:an Integrated Approach to the Theory and Applications of Fibrous Filters[M]. New York:Pergamon Press, 1993
    [3] Billings C E. Effects of Particle Accumulation in Aerosol Filtration[D]. California Institute of Technology, 1966
    [4] Payatakes A C, Tien C. Particle Deposition in Fibrous Media With Dendrite-Like Pattern:a Preliminary Model[J]. Journal of Aerosol Science, 1976, 7(2):85-100
    [5] Przekop R, GradonL. Effect of Particle and Fiber Size on the Morphology of Deposits in Fibrous Filters[J]. International Journal for Numerical Methods in Fluids. 2014,76(10):779-788
    [6] Kanaoka C, Emi H, Myojo T. Simulation of the Growing Process of a Particle Dendrite and Evaluation of a Single Fiber Collection Efficiency with Dust Load[J]. Journal of Aerosol Science, 1980, 11(4):377-389
    [7] Kanaoka C, Emi H, Hiragi S, et al. Morphology of Particulate Agglomerates on a Cylindrical Fiber and Collection Efficiency of a Dust-Loaded Filter[C]//Aerosols, Formation, and Reactivity, 2nd International Conference, Berlin:1986:674-677
    [8] Raynor P C. Single-fiber Interception Efficiency for Elliptical Fibers[J]. Aerosol Science and Technology,2008, 42(6):357-368
    [9] Wang Haoming, Zhao Haibo, Wang Kun, et al. Simulating and Modeling Particulate Removal Processes by Elliptical Fibers[J]. Aerosol Science and Technology, 2014, 48(2):207-218
    [10] Wang Wenxi, Xie Mingliang, Wang Lianping. An Exact Solution of Interception Efficiency Over an Elliptical Fiber Collector[J]. Aerosol Science and Technology, 2012, 46(8):843-851
    [11] Fardi B, Liu B Y H. Flow Field and Pressure Drop of Filters With Rectangular Fibers[J]. Aerosol Science and Technology, 1992, 17(1):36-44
    [12] Ouyang M, Liu B Y H. Analytical Solution of Flow Field and Pressure Drop For Filters With Rectangular Fibers[J]. Journal of Aerosol Science, 1998, 29(1/2):187-196
    [13] Zhu C, Lin C H, Cheung C S, Inertial Impactiondominated Fibrous Filtration with Rectangular or Cylindrical Fibers[J]. Powder Technology, 2000, 112(1):149-162
    [14] Adamiak K. Viscous Flow Model for Charged Particle Trajectories Around a Single Square Fiber in an Electric Field[J]. Industry Applications, IEEE Transactions on,1999, 35(2):352-358
    [15] Fotovati S, Tafreshi H V, Pourdeyhimi B. Analytical Expressions for Predicting Performance of Aerosol Filtration Media Made up of Trilobal Fibers[J]. Journal of Hazardous Materials, 2011, 186(2):1503-1512
    [16] Inagaki M, Sakai K, Namiki N, et al. Influence of Fiber Cross-Sectional Shape on Filter Collection Performance[J]. Kagaku Kogaku Ronbunshu, 2001, 27(1):113-120
    [17] Lamb G E R, Costanza P A. Influences of Fiber Geometry on the Performance of Nonwoven air Filters Part III:Cross-Sectional Shape[J]. Textile Research Journal, 1980,50(6):362-370
    [18] Sanchez J R, Rodriguez J M, Alvaro A, et al. The Capture of Fly ash Particles Using Circular and Noncircular Cross-Section Fabric Filters[J]. Environmental Progress,2007, 26(1):50-58
    [19] Hosseini S A, Tafreshi H V. Modeling Particle-Loaded Single Fiber Efficiency and Fiber Drag Using ANSYS-Fluent CFD code[J]. Computers&Fluids, 2012, 66:157-166
    [20] Wang Kun, Zhao Haibo, The Influence of Fiber Geometry and Orientation Angle on Filtration Performance[J].Aerosol Science and Technology, 2015, 49(2):75-85
    [21] Huang Haokai, Wang Kun, Zhao Haibo. Numerical Study of Pressure Drop and Diffusional Collection Efficiency of Several Typical Noncircular Fibers in Filtration[J]. Powder Technology, 2016, 292:232-241
    [22] Filippova O, Hanel D. Lattice-Boltzmann Simulation of Gas-particle Flow in Filters[J]. Computers&Fluids,1997, 26:697-712
    [23] Lantermann U, Hanel D. Particle Monte Carlo and Lattice-Boltzmann Methods for Simulations of GasParticle Flows[J]. Computers&fluids, 2007, 36(1):407-422
    [24] Chen S, Doolen G D. Lattice Boltzmann Method for Fluid Flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364
    [25] Qian Y H, D'Humieres D, Lallemand P. Lattice BGK Models for Navier-Stokes Equation[J]. Euro physics Letters, 1992, 17(6):479-484