四取代羧酸酞菁锌光动力诱导口腔鳞状细胞癌细胞凋亡
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Zinc phthalocyanines tetrasubstituted with carboxy moieties induce cell apoptosis in oral squamous cell carcinoma cells by photodynamic therapy
  • 作者:罗亚东 ; 丁旭 ; 杜洪明 ; 宋海洋 ; 马虞楠 ; 李萌 ; 武和明
  • 英文作者:LUO Yadong;DING Xu;DU Hongming;SONG Haiyang;MA Yunan;LI Meng;WU Heming;Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University;
  • 关键词:光动力疗法 ; 酞菁锌 ; 口腔鳞状细胞癌 ; 凋亡
  • 英文关键词:photodynamic therapy;;zinc phthalocyanine;;oral squamous cell carcinoma;;cell apoptosis
  • 中文刊名:KQYX
  • 英文刊名:Stomatology
  • 机构:南京医科大学附属口腔医院口腔颌面外科南京医科大学口腔疾病研究江苏省重点实验室;
  • 出版日期:2019-04-28
  • 出版单位:口腔医学
  • 年:2019
  • 期:v.39;No.258
  • 基金:国家自然科学基金(81600908);; 江苏省医学创新团队(CXTDA2017036)
  • 语种:中文;
  • 页:KQYX201904002
  • 页数:7
  • CN:04
  • ISSN:32-1255/R
  • 分类号:7-13
摘要
目的探讨光敏剂四取代羧酸酞菁锌介导的光动力疗法(photodynamic therapy,PDT)对体外培养的口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)细胞的光动力作用。方法以人口腔鳞状细胞癌细胞系HN4为研究对象。实验分组为不同梯度浓度的暗反应组和光反应组,光反应组细胞行梯度光照剂量垂直照射处理。CCK-8法检测不同四取代羧酸酞菁锌浓度及不同光照剂量对HN4细胞增殖的影响,流式细胞仪检测其对周期及凋亡的影响。蛋白质免疫印迹法(Western blot)检测不同药物浓度下Caspase-3、Bcl-2表达的变化。结果四取代羧酸酞菁锌浓度及光照剂量均影响细胞增殖(P<0.05)。暗反应组的半数抑制浓度(IC50)显著高于光反应组(P<0.05)。一定浓度范围内,随着四取代羧酸酞菁锌药物浓度的提高,细胞周期的S期相对减少,G2/M期相对增多,细胞凋亡率也随之增加(P<0.05),Caspase-3表达随之升高(P<0.05),Bcl-2表达随之降低(P<0.05)。结论四取代羧酸酞菁锌介导的PDT是一种有效的抗癌方法,能高效诱导口腔鳞癌细胞凋亡。
        Objective To investigate the photosensitization of photodynamic therapy(PDT) mediated by zinc phthalocyanines tetrasubstituted with carboxyl moieties on oral squamous cell carcinoma(OSCC) cells in vitro. Methods The human OSCC cell line HN4 was studied. The experiments were divided into dark reaction group and light reaction group and the cells in the light reaction group received vertical irradiation with gradient light dose. The effect of different light doses on cell proliferation was detected by Cell Counting kit-8(CCK-8). The effects on cell cycle changes and apoptosis were determined with flow cytometry. The changes of Caspase-3, Bcl-2 expression were examined before and after the interference by Western-blot. Results Both drug concentration and light dose affected cell proliferation(P<0.05). The 50% inhibition concentration(IC50) in the dark reaction group was significantly higher than that in the light reaction groups(P<0.05). Within the certain concentration range, with the improvement of drug concentration, the S phase of the cell cycle relatively decreased, the G2/M phase relatively increased, the number of cell apoptosis increased, the Caspase-3 expression increased while the Bcl-2 expression decreased(P<0.05). Conclusion Zinc phthalocyanines tetrasubstituted with carboxyl moieties is an effective anti-cancer drug, which can effectively induce the apoptosis of OSCC.
引文
[1] Omar EA.The outline of prognosis and new advances in diagnosis of oral squamous cell carcinoma (OSCC):Review of the literature[J].J Oral Oncol,2013,2013:1-13.
    [3] Allison RR,Downie GH,Cuenca R,et al.Photosensitizers in clinical PDT[J].Photodiagnosis Photodyn Ther,2004,1(1):27-42.
    [4] Wang X,Ji J,Zhang H,et al.Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells[J].Oncotarget,2015,6(42):44688-44702.
    [5] Mehta H J,Biswas A,Fernandez-Bussy S,et al.Photodynamic therapy for bronchial microscopic residual disease after resection in lung cancer[J].J Bronchology Interv Pulmonol,2019,26(1):49-54.
    [6] Gao S,Zhang M,Zhu X,et al.Apoptotic effects of Photofrin-Diomed 630-PDT on SHEEC human esophageal squamous cancer cells[J].Int J Clin Exp Med,2015,8(9):15098-15107.
    [7] Ghoodarzi R,Changizi V,Montazerabadi AR,et al.Assessing of integration of ionizing radiation with Radachlorin-PDT on MCF-7 breast cancer cell treatment[J].Lasers Med Sci,2016,31(2):213-219.
    [8] Zorlu Y,Ermeydan MA,Dumoulin F,et al.Glycerol and galact-ose substituted zinc phthalocyanines.Synthesis and photodynamic activity[J].Photochem Photobiol Sci,2009,8(3):312-318.
    [9] Maeding N,Verwanger T,Krammer B.Boosting tumor-specific immunity using PDT[J].Cancers,2016,8(10):91.
    [10] Wang W,Moriyama LT,Bagnato VS.Photodynamic therapy induced vascular damage:an overview of experimental PDT[J].Laser Physics Letters,2012,10(2):023001.
    [11] Lamberti MJ,Pansa MF,Vera RE,et al.Transcriptional activa-tion of HIF-1 by a ROS-ERK axis underlies the resistance to photodynamic therapy[J].PLoS ONE,2017,12(5):e0177801.
    [12] Goulart C,Rodriguez D,Kanno AI,et al.Recombinant BCG expressing a PspA-PdT fusion protein protects mice against pneumococcal lethal challenge in a prime-boost strategy[J].Vaccine,2017,35(13):1683-1691.
    [13] Drakopoulou E,Uray K,Mez? G,et al.Synthesis and antibody recognition of mucin 1 (MUC1)-alpha-conotoxin chimera[J].J Pept Sci,2000,6(4):175-185.
    [14] St Denis TG,Hamblin MR.Synthesis,bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy[J].Bioanalysis,2013,5(9):1099-1114.
    [15] Keyal U,Luo Q,Bhatta AK,et al.Zinc pthalocyanine-loaded chitosan/mPEG-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma[J].J Biophotonics,2018,11(11):e201800114.
    [16] Kuzyniak W,Schmidt J,Glac W,et al.Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer[J].Int J Oncol,2017,50(3):953-963.
    [17] Chen YL,Liu FQ,Guo Y,et al.PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles[J].Biomater Sci,2018,6(8):2130-2143.
    [18] Toratani S,Tani R,Kanda T,et al.Photodynamic therapy using Photofrin and excimer dye laser treatment for superficial oral squamous cell carcinomas with long-term follow up[J].Photodiagnosis Photodyn Ther,2016,14:104-110.
    [19] Young J,Yee M,Kim H,et al.Phototoxicity of liposomal Zn- and Al-phthalocyanine against cervical and oral squamous cell carcinoma cells in vitro[J].Med Sci Monit Basic Res,2016,22:156-164.
    [20] Ince M,Er O,Ocakoglu K,et al.Investigation of in vitro PDT activities and in vivo biopotential of zinc phthalocyanines using (131)I radioisotope[J].Chem Biol Drug Des,2016,87(2):224-232.
    [21] Yurt F,Ince M,Colak SG,et al.Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO2 nanoparticles[J].Int J Pharm,2017,524(1-2):467-474.
    [22] Kim MM,Darafsheh A,Ahmad M,et al.PDT dose dosimeter for pleural photodynamic therapy[J].Proc SPIE Int Soc Opt Eng,2016,9694:96940Y.
    [23] Fakayode OJ,Kruger CA,Songca SP,et al.Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-SPIONs-gold-meso-tetrakis(4-hydroxyphenyl)porphyrin conjugate against breast cancer cells[J].Mater Sci Eng C Mater Biol Appl,2018,92:737-744.
    [24] Maftoum-Costa M,Naves KT,Oliveira AL,et al.Mitochondria,endoplasmic reticulum and actin filament behavior after PDT with chloroaluminum phthalocyanine liposomal in HeLa cells[J].Cell Biol Int,2008,32(8):1024-1028.
    [25] Li KT,Chen Q,Wang DW,et al.Mitochondrial pathway and endoplasmic reticulum stress participate in the photosensitizing effectiveness of AE-PDT in MG63cells[J].Cancer Medicine,2016,5(11):3186-3193.
    [26] Wang J,Zhang L,Chen M,et al.Activatable ferritin nanocomplex for real-time monitoring of caspase-3 activation during photodynamic therapy[J].ACS Appl Mater Interfaces,2015,7(41):23248-23256.
    [27] Wang Y,Xia C,Lun Z,et al.Crosstalk between p38 MAPK and caspase-9 regulates mitochondria-mediated apoptosis induced by tetra-α-(4-carboxyphenoxy) phthalocyanine zinc photodynamic therapy in LoVo cells[J].Oncol Rep,2018,39(1):61-70.
    [28] Chun J,Joo EJ,Kang M,et al.Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells[J].J Cell Biochem,2013,114(2):456-470.