长江口盐度梯度下不同形态碳的分布、来源与混合行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution, sources and mixing behavior of different carbon species along a salinity gradient in the Changjiang Estuary
  • 作者:叶君 ; 姚鹏 ; 徐亚宏 ; 王金鹏 ; 赵彬
  • 英文作者:Ye Jun;Yao Peng;Xu Yahong;Wang Jinpeng;Zhao Bin;Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education;Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology (Qingdao);Joint Laboratory for Maritime Equipment Technology, Pilot National Laboratory for Marine Science and Technology (Qingdao);
  • 关键词:长江口 ; 最大浑浊带 ; 无机碳 ; 有机碳 ; 同位素 ; 有色溶解有机物
  • 英文关键词:Changjiang Estuary;;Turbidity Maximum Zone;;inorganic carbon(IC);;organic carbon(OC);;isotope;;chromophoric dissolved organic matter(CDOM)
  • 中文刊名:SEAC
  • 机构:海洋化学理论与工程技术教育部重点实验室;青岛海洋科学与技术试点国家实验室海洋生态与环境科学功能实验室;青岛海洋科学与技术试点国家实验室海洋高端装备联合实验室(中船重工集团部分);
  • 出版日期:2019-04-10
  • 出版单位:海洋学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划项目(2016YFA0600902);; 国家自然科学基金项目(41676063,41620104001,41521064)
  • 语种:中文;
  • 页:SEAC201904002
  • 页数:12
  • CN:04
  • ISSN:11-2055/P
  • 分类号:19-30
摘要
河口碳的生物地球化学过程是全球碳循环的重要组成。通过测定溶解无机碳(DIC)及其稳定同位素丰度(δ~(13)C_(DIC)),溶解有机碳(DOC),有色溶解有机物(CDOM),颗粒有机碳(POC)及其稳定同位素丰度(δ~(13)C_(POC))与元素比值(N/C)及相关指标,研究了2014年7月长江口盐度梯度下不同形态碳的分布、来源和混合行为。结果表明,DIC浓度、DOC浓度、POC含量分别为1 583.2~1 739.6μmol/L,128.4~369.4μmol/L和51.2~530.8μmol/L,这些不同形态碳及CDOM的荧光组分的分布模式相似,均是从口内到口外,整体呈现先增大后减小的趋势,并与盐度呈现非保守混合行为。添加作用主要发生在在口门处最大浑浊带附近。与含量相反,从口内到口外,δ~(13)C_(DIC)和δ~(13)C_(POC)均呈现逐渐减小再增大的趋势,在口门附近达到最低值,分别为-9.7‰和-26.7‰。在口门附近不同形态碳含量上升及δ~(13)C_(DIC)、δ~(13)C_(POC)的降低可能主要与沉积物再悬浮及微生物作用有关。基于蒙特卡洛模拟的三端元混合模型的结果显示,河口内外POC来源变化明显,口内POC以陆源有机碳贡献为主,平均为62.3%,口外海源贡献逐渐增加。CDOM相关参数结果表明长江口CDOM主要来自陆源输入,海源及人类活动等也对其产生影响。
        The biogeochemical processes of carbon in estuaries are an important part of global carbon cycle. Dissolved inorganic carbon(DIC), stable carbon isotopic abundance of(δ~(13)C_(DIC)), dissolved organic carbon(DOC), chromophoric dissolved organic matter(CDOM), particle organic carbon(POC), stable carbon isotopic abundance of POC(δ~(13)C_(POC)), atomic element ratios(N/C) and other related parameters were analyzed in order to study the distribution, sources and mixing behavior of different carbon species along a salinity gradient in the Changjiang Estuary in July 2014. The concentrations of DIC, DOC and POC range from 1 583.2 to 1 739.6 μmol/L, 128.4 to 369.4 μmol/L, 51.2 to 530.8 μmol/L, respectively. Similar with CDOM, these carbon species increase first and then decrease from the inner estuary to outer estuary, showing non-conservative mixing behaviors with salinity. The addition behavior of these carbon species mostly occurs in the turbidity maximum zone. In contrast, the values of δ~(13)C_(DIC) and δ~(13)C_(POC) first decrease and then increase from the inner estuary to outer estuary, with the minimum values are found in the river mouth(-9.7‰ and-26.7‰, respectively). The increasing of carbon concentrations and decreasing of δ~(13)C_(DIC), δ~(13)C_(POC) values near the river mouth could be attributed to sediment re-suspension and/or microbial processes. The results of a three end-member mixing model based on Monte-Carlo Simulation indicate that the sources of POC vary greatly from the inner estuary to outer estuary. Terrestrial organic carbon is the main source of POC in the inner estuary, with the average value of 62.3%, whereas contribution of marine organic carbon gradually increase in the outer estuary. The results of CDOM related parameters show that the CDOM is mainly derived from terrestrial input, however, marine sources and human activities may also have impacts in the Changjiang Estuary.
引文
[1] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J]. Limnology and Oceanography, 1986, 31(4): 717-738.
    [2] Harvey H R, Mannino A. The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers[J]. Organic Geochemistry, 2001, 32(4): 527-542.
    [3] Bauer J E, Cai Weijun, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70.
    [4] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195-212.
    [5] Li Penghui, Chen Ling, Zhang Wen, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze estuary and its adjacent sea using fluorescence and parallel factor analysis[J]. PLoS One, 2015, 10(6): e0130852.
    [6] 潘慧慧, 姚鹏, 赵彬, 等. 基于水淘选分级的长江口最大浑浊带附近颗粒有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(4): 1-15. Pan Huihui, Yao Peng, Zhao Bin, et al. Sources, distribution and preservation of size-fractionated particulate organic carbon in the turbidity maximum zone of the Changjiang Estuary based on water elutriation[J]. Haiyang Xuebao, 2015, 37(4): 1-15.
    [7] Zhu Zhuoyi, Zhang Jing, Wu Ying, et al. Bulk particulate organic carbon in the East China Sea: tidal influence and bottom transport[J]. Progress in Oceanography, 2006, 69(1): 37-60.
    [8] Wu Ying, Zhang Jing, Liu Sumei, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 13-25.
    [9] 林晶. 长江口及其毗邻海区溶解有机碳和颗粒有机碳的分布[D]. 上海: 华东师范大学, 2007. Lin Jing. Distributions of dissolved organic carbon and particulate organic carbon in the Changjiang Estuary and its adjacent area[D]. Shanghai: East China Normal University, 2007.
    [10] Guo Weidong, Yang Liyang, Zhai Weidong, et al. Runoff‐mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary—The Changjiang Estuary[J]. Journal of Geophysical Research, 2014, 119(5): 776-793.
    [11] 徐亚宏, 姚鹏, 苏荣国, 等. 长江口盐度梯度下有色溶解有机物的分布、来源与季节变化[J]. 海洋学报, 2017, 39(6): 21-32. Xu Yahong, Yao Peng, Su Rongguo, et al. Distribution, sources, and seasonal variation of colored dissolved organic matter along salinity gradients in the Changjiang Estuary[J]. Haiyang Xuebao, 2017, 39(6): 21-32.
    [12] Zhu Wenzhuo, Zhang Honghai, Zhang Jing, et al. Seasonal variation in chromophoric dissolved organic matter and relationships among fluorescent components, absorption coefficients and dissolved organic carbon in the Bohai Sea, the Yellow Sea and the East China Sea[J]. Journal of Marine Systems, 2018, 180: 9-23.
    [13] Liu Qiong, Pan Delu, Bai Yan, et al. The satellite reversion of dissolved organic carbon (DOC) based on the analysis of the mixing behavior of DOC and colored dissolved organic matter: the East China Sea as an example[J]. Acta Oceanologica Sinica, 2013, 32(2): 1-11.
    [14] 孙欣, 宋贵生, Xie Huixiang. 长江口溶解有机物光漂白和光矿化表观量子产率[J]. 海洋学报, 2016, 38(4): 120-129. Sun Xin, Song Guisheng, Xie Huixiang. The apparent quantum yields of dissolved organic matter photobleaching and photomineralization in the Changjiang River Estuary[J]. Haiyang Xuebao, 2016, 38(4): 120-129.
    [15] Wang Xuchen, Luo Chunle, Ge Tiantian, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River Estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1358-1374.
    [16] Zhai Weidong, Yan Xiuli, Qi Di. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season[J]. Estuarine, Coastal and Shelf Science, 2017, 197: 136-149.
    [17] Patra P, 刘丛强, 李思亮, 等. 长江口溶解无机碳循环的地球化学研究[J]. 地球与环境, 2010, 38(4): 409-413. Patra S, Liu Congqiang, Li Siliang, et al. A geochemical study on carbon cycling in the Changjiang estuary[J]. Earth and Environment, 2010, 38(4): 409-413.
    [18] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. Weinheim: Wiley-VCH, 2007: 407-420.
    [19] Xue Yuejun, Ge Tiantian, Wang Xuchen. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry[J]. Journal of Ocean University of China, 2015, 14(6): 989-993.
    [20] Guo Weidong, Stedmon C A, Han Yuchao, et al. The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters[J]. Marine Chemistry, 2007, 107(3): 357-366.
    [21] Stedmon C A, Markager S, Kaas H. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters[J]. Estuarine, Coastal and Shelf Science, 2000, 51(2): 267-278.
    [22] Gjessing E T, K?llqvist T. Algicidal and chemical effect of u.v.-radiation of water containing humic substances[J]. Water Research, 1991, 25(4): 491-494.
    [23] Bai Ying, Su Rongguo, Shi Xiaoyong. Assessing the dynamics of chromophoric dissolved organic matter in the Southern Yellow Sea by excitation–emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC)[J]. Continental Shelf Research, 2014, 88: 103-116.
    [24] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706-719.
    [25] Cai Weijun, Dai Minhan, Wang Yongchen, et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River Estuary and the adjacent Northern South China Sea[J]. Continental Shelf Research, 2004, 24(12): 1301-1319.
    [26] 杨涛, 蒋少涌, 赖鸣远, 等. 连续流同位素质谱测定水中溶解无机碳含量和碳同位素组成的方法研究[J]. 地球化学, 2006, 35(6): 675-680. Yang Tao, Jiang Shaoyong, Lai Mingyuan, et al. Analytical method for concentration and carbon isotopic composition of dissolved inorganic carbon (DIC) by continuous flow-isotope ratio mass spectrometer[J]. Geochimica, 2006, 35(6): 675-680.
    [27] Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412-413: 232-238.
    [28] Zhang Jing, Wu Ying, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106(1/2): 111-126.
    [29] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325-346.
    [30] Samanta S, Dalai T K, Pattanaik J K, et al. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River Estuary, India: evidence of DIC generation via organic carbon degradation and carbonate dissolution[J]. Geochimica et Cosmochimica Acta, 2015, 165: 226-248.
    [31] Guo Xianghui, Wong G T F. Carbonate chemistry in the northern South China Sea shelf-sea in June 2010[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 119-130.
    [32] Zhang Longjun, Xue Ming, Wang Min, et al. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir[J]. Journal of Geophysical Research, 2014, 119(5): 741-757.
    [33] Borges A V, Abril G, Bouillon S. Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta[J]. Biogeosciences, 2018, 15(4): 1093-1114.
    [34] Lefèvre N, Flores Montes M, Gaspar F L, et al. Net heterotrophy in the amazon continental shelf changes rapidly to a sink of CO2 in the outer Amazon Plume[J]. Frontiers in Marine Science, 2017, 4: 278.
    [35] Cai Yihua, Guo Laodong, Wang Xuri, et al. Abundance, stable isotopic composition, and export fluxes of DOC, POC, and DIC from the Lower Mississippi River during 2006-2008[J]. Journal of Geophysical Research, 2015, 120(11): 2273-2288.
    [36] Guo Xianghui, Dai Minhan, Zhai Weidong, et al. CO2 flux and seasonal variability in a large subtropical estuarine system, the Pearl River Estuary, China[J]. Journal of Geophysical Research, 2009, 114(G3): G03013.
    [37] Lohrenz S E, Cai Weijun. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin[J]. Geophysical Research Letters, 2006, 33(1): L01601.
    [38] He Biyan, Dai Minhan, Zhai Weidong, et al. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River Estuary, China[J]. Marine Chemistry, 2010, 119(1/4): 52-64.
    [39] Gu Dianjun, Zhang Longjun, Jiang Liqing. The effects of estuarine processes on the fluxes of inorganic and organic carbon in the Yellow River Estuary[J]. Journal of Ocean University of China, 2009, 8(4): 352-358.
    [40] Wang Xuchen, Chen R F, Gardner G B. Sources and transport of dissolved and particulate organic carbon in the Mississippi River Estuary and adjacent coastal waters of the northern Gulf of Mexico[J]. Marine Chemistry, 2004, 89(1/4): 241-256.
    [41] Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
    [42] Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow Rivers (China)[J]. Marine Chemistry, 1993, 43(1/4): 235-246.
    [43] Bianchi T S, Mitra S, McKee B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin[J]. Marine Chemistry, 2002, 77(2/3): 211-223.
    [44] 金海燕, 林以安, 陈建芳, 等. 黄海、东海颗粒有机碳的分布特征及其影响因子分析[J]. 海洋学报, 2005, 27(5): 46-53. Jin Haiyan, Lin Yian, Chen Jianfang, et al. Analysis of driving factors and distribution of particulate organic carbon in the Huanghai Sea and the East China Sea[J]. Haiyang Xuebao, 2005, 27(5): 46-53.
    [45] Burdige D J. Sediment Pore Waters[M]//Hansell D A, Carlson C A. Biogeochemistry of Marine Dissolved Organic Matter. London: Academic Press, 2002: 611-663.
    [46] 程远月. 沉积物间隙水中CDOM光学特性与河口CDOM光化学反应研究[D]. 厦门: 厦门大学, 2007. Cheng Yuanyue. The study on optical characteristics of CDOM in sediment pore waters and photochemistry of CDOM in estuarine waters[D]. Xiamen: Xiamen University, 2007.
    [47] Wang Ying, Zhang Di, Shen Zhenyao, et al. Revealing sources and distribution changes of dissolved organic matter (DOM) in pore water of sediment from the Yangtze Estuary[J]. PLoS One, 2013, 8(10): e76633.
    [48] 姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J]. 海洋学报, 2014, 36(2): 23-32. Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.
    [49] Zhao Bin, Yao Peng, Bianchi T S, et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J]. Journal of Marine Systems, 2017, 172: 64-74.
    [50] Hedges J I. Global biogeochemical cycles: progress and problems[J]. Marine Chemistry, 1992, 39(1/3): 67-93.
    [51] Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies[J]. Nature, 1987, 329(6141): 708-710.
    [52] 潘慧慧, 姚鹏, 王金鹏, 等. 长江口水淘选分级颗粒物中有机碳的来源、分布与降解[J]. 中国海洋大学学报, 2016, 46(2): 90-99. Pan Huihui, Yao Peng, Wang Jinpeng, et al. Sources, distribution, and decay of size-fractionated particulate organic carbon in the Changjiang Estuary based on water elutriation[J]. Periodical of Ocean University of China, 2016, 46(2): 90-99.