温度对MEC阳极膜形成及胞外聚合物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of temperature on MEC anode biofilm formation and extracellular polymers substances
  • 作者:孙和临 ; 邵琼丽 ; 李建昌 ; 郑金柱 ; 许坤德 ; 龙宪钢
  • 英文作者:SUN Helin;SHAO Qiongli;LI Jianchang;ZHENG Jingzhu;XU Kunde;LONG Xiangang;Solar Energy Research Institute, Yunnan Normal University;
  • 关键词:微生物电解池 ; 阳极生物膜 ; 温度 ; 制氢 ; 胞外聚合物
  • 英文关键词:microbiological electrolytic cell(MEC);;anode biofilm;;temperature;;hydrogen production;;extracellular polymeric substances(EPS)
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:云南师范大学太阳能研究所;
  • 出版日期:2019-08-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.335
  • 基金:国家自然科学基金(21463029)
  • 语种:中文;
  • 页:HGJZ201908037
  • 页数:7
  • CN:08
  • ISSN:11-1954/TQ
  • 分类号:318-324
摘要
温度是影响微生物活性和优势菌种以及反应器性能的重要参数之一。实验采用单池微生物电解池(MECs),以厌氧活性污泥为接种物,葡萄糖为碳源,在不同温度条件下培养运行微生物电解池阳极生物膜。实验结果表明:在25℃、30℃、35℃和45℃的培养温度下最大电流密度分别达到2.04A/m2、7.75A/m2、12.27A/m2和2.5A/m2。阳极生物膜电化学活性和氢气产率变化趋势与MECs电流密度相类似,均表现出在一定温度范围内升高温度有利于阳极膜电化学活性与阳极膜氢气产率。进一步分析阳极膜生物量与胞外聚合物(EPS)成分结果表明:一定温度范围内升高温度有利于阳极膜生物量的提高,大量的阳极附着细菌可以产生更高的电流密度与EPS含量,阳极膜EPS中蛋白质成分明显高于多糖,并且蛋白质含量随产电密度增高而增大。傅里叶变换红外光谱(FTIR)分析证实了生物膜EPS中存在蛋白质和碳水化合物。
        Temperature was one of the important parameters which can significantly effect on the activity,dominant species and reactor performance. Anaerobic activated sludge was used as the inoculant and glucose was used as carbon source. The anode biofilm of the single chamber microbial electrolysis cells(MECs) was operated at different temperature. The experimental results showed that the maximum current densities were 2.04 A/m2, 7.75 A/m2, 12.27 A/m2 and 2.5 A/m2 respectively at 25℃, 30℃, 35℃ and 45℃.The trend of electrochemical activity and hydrogen yield of anode biofilm is similar to that of MECs,which shows that increasing temperature in a certain temperature range is beneficial to the electrochemical activity of anode biofilm and hydrogen yield of anode biofilm. The results of anode biomass and extracellular polymeric substances(EPS) analysis indicated that the increase of temperature within a certain temperature range was beneficial to the increase of the anode membrane biomass. A large number of bacteria adhering to the anode could produce higher current density and EPS content. The protein composition of EPS was significantly higher than that of polysaccharide, and the protein content increased with the increase of current density. Fourier transform infrared(FTIR) spectrophotometry analysis confirmed the presence of proteins and carbohydrates in the biofilm.
引文
[1]王博,高冠道,李凤祥,等.微生物电解池应用研究进展[J].化工进展, 2017, 36(3):1084-1092.WANG Bo, GAO Guandao, LI Fengxiang, et al. Advance in application of microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1084-1092.
    [2] YANG N, HAFEZ H, NAKHLA G. Impact of volatile fatty acids on microbial electrolysis cell performance[J]. Bioresource Technology,2015, 193(6):449-455.
    [3] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science&Technology, 2006, 38(7):2281-2285.
    [4] YOU S, ZHAO Q, ZHANG J, et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions[J]. Power Sources, 2007, 173(1):172-177.
    [5] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology, 2009, 100(2):717-723.
    [6] CATAL T, KAVANAGH P, O’FLAHERTY V, et al. Generation of electricity in microbial fuel cells at sub-ambient temperatures[J].Journal of Power Sources, 2011, 196(5):2676-2681.
    [7] WAGNER R C, CALL D F, LOGAN B E. Optimal set anode potentials vary in bioelectrochemical systems[J]. Environmental Science&Technology, 2010, 44(16):6036-6041.
    [8] FINKELSTEIN D A, TENDER L M, ZEIKUS J G. Effect of electrode potential on electrode-reducing microbiota[J]. Environmental Science&Technology, 2006, 40(22):6990-6995.
    [9] KYAZZE G, POPOV A, DINSDALE R, et al. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2010, 35(15):7716-7722.
    [10] KIM J R, MIN B, LOGAN B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68(1):23-30.
    [11] RITTMANN B E, MCCARTY P L. Environmental biotechnology:principles and applications[M]. Boston:McGraw-Hill, 2001.
    [12]闫立龙,刘玉,任源.胞外聚合物对好氧颗粒污泥影响的研究进展[J].化工进展, 2013, 32(11):2744-2748.YAN Lilong, LIU Yu, REN Yuan. A review on the effects of extracellular polymeric substance to aerobic granular sludge[J].Chemical Industry and Engineering Progress, 2013, 32(11):2744-2748.
    [13] NAM J Y, KIM H W, LIM K H. Electricity generation from MFCs using differently grown anode-attached bacteria[J]. Environmental Engineering Research, 2010, 15(2):71-78.
    [14] VEREA L, SAVADOGO O, VERDE A, et al. Performance of a microbial electrolysis cell(MEC)for hydrogen production with a new process for the biofilm formation[J]. International Journal of Hydrogen Energy, 2014, 39(17):8938-8946.
    [15]陆佳,刘永军,刘喆,等.有机负荷对污泥胞外聚合物分泌特性及颗粒形成的影响[J].化工进展, 2018, 37(4):1616-1622.LU Jia, LIU Yongjun, LIU Zhe, et al. Effects of organic loading on the secretory characteristics of EPS and particle formation[J]. Chemical Industry and Engineering Progress, 2018, 37(4):1616-1622.
    [16]张兰河,王佳平,陈子成,等. Ca2+对序批式生物反应器活性污泥性能的影响[J].化工进展, 2018, 37(9):3675-3681.ZHANG Lanhe, WANG Jiaping, CHEN Zicheng, et al. Effect of Ca2+on the properties of activated sludge in the SBR[J]. Chemical Industry and Engineering Progress, 2018, 37(9):3675-3681.
    [17]王亚利,刘永军,刘喆,等.聚合氯化铝投加时间对好氧颗粒污泥的形成和胞外聚合物的影响[J].化工进展, 2015, 34(1):278-284.WANG Yali, LIU Yongjun, LIU Zhe, et al. Influence of poly aluminium chloride dosing time on formation and EPS of aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 2015,34(1):278-284.
    [18] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via(semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7):1646-1654.
    [19]赵煜,薄晓,马彦,等.不同温度下微生物燃料电池的运行特性[J].化工进展, 2014, 33(3):629-650.ZHAO Yu, BO Xiao, MA Yan, et al. Research on producing electricity characteristics of microbial fuel cell at different temperatures[J].Chemical Industry and Engineering Progress, 2014, 33(3):629-650.
    [20]詹亚力,王琴,张佩佩,等.微生物燃料电池影响因素及作用机理探讨[J].高等学校化学学报, 2008, 29(1):144-148.ZHAN Yali, WANG Qin, ZHANG Peipei, et al. Investigation on influence factors and mechanism of microbial fuel cell[J]. Chemical Journal of Chinese Universities, 2008, 29(1):144-148.
    [21] MARSILI E, ROLLEFSON J B, BARON D B, et al. Microbial biofilm voltammetry:direct electrochemical characterization of catalytic electrode-attached biofilms[J]. Applied&Environmental Microbiology, 2008, 74(23):7329-7337.
    [22] VU B, CHEN M, CRAWFORD R J, et al. Bacterial extracellular polysaccharides involved in biofilm formation[J]. Molecules, 2009, 14(7):2535-2554.
    [23] ZHANG L, ZHU X, LI J, et al. Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances[J]. Journal of Power Sources, 2011, 196(15):6029-6035.
    [24] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101.
    [25] SUN X F, WANG S G, ZHANG X M, et al. Spectroscopic study of Zn2+and Co2+binding to extracellular polymeric substances(EPS)from aerobic granules[J]. Journal of Colloid and Interface Science, 2009, 335(1):11-17.
    [26] XU C, ZHANG S, CHUANG C Y, et al. Chemical composition and relative hydrophobicity of microbial exopolymeric substances(EPS)isolated by anion exchange chromatography and their actinide-binding affinities[J]. Marine Chemistry, 2011, 126(1):27-36.
    [27] MARUYAMA T, KATOH S, NAKAJIMA M, et al. FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes[J]. Journal of Membrane Science, 2001, 192(1):201-207.
    [28] OMOIKE A, CHOROVER J. Spectroscopic study of extracellular polymeric substances from bacillus subtilis:aqueous chemistry and adsorption effects[J]. Biomacromolecules, 2004, 5(4):1219-1230.
    [29] COMTE S, GUIBAUD G, BAUDU M. Relations between extraction protocols for activated sludge extracellular polymeric substances(EPS)and EPS complexation properties. PartⅠ. Comparison of the efficiency of eight EPS extraction methods[J]. Enzyme and Microbial Technology,2006, 38(1):246-252.