Al/SiC功能梯度材料(FGM)涂层板的安定性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shakedown Analysis of Al/SiC Functionally Graded Material(FGM) Coating Plate
  • 作者:郑恒伟 ; 李定玉 ; 陈翔 ; 张龙 ; 敬小非 ; 刘琰 ; 王东哲
  • 英文作者:ZHENG Heng-wei;LI Ding-yu;CHEN Xiang;ZHANG Long;JING Xiao-fei;LIU Yan;WANG Dong-zhe;Chongqing University of Science & Technology;Chongqing Material Research Institute;Chongqing University of Posts and Telecommunications;
  • 关键词:热-机械作用 ; 安定分析 ; 分段函数模型 ; 应力分布 ; 残余应力 ; Al/SiC功能梯度材料涂层板
  • 英文关键词:thermal-mechanical loading;;shakedown analysis;;piecewise function model;;stress distribution;;residual stress;;Al/SiC functionally graded material coating plate
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:重庆科技学院;重庆材料研究院;重庆邮电大学;
  • 出版日期:2019-01-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金项目(11602042,11602043,11802047);; 重庆市科委基础与前沿研究项目(cstc2015jcyjA50010,cstc2017jcyjAX0240,cstc2016jcyjA0319,cstc2018jcyjAX0231);; 重庆市教育委员会科学技术研究项目(KJ1713323);; 重庆科技学院校内基金(CK2016B16)~~
  • 语种:中文;
  • 页:BMJS201901008
  • 页数:7
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:62-68
摘要
目的对热机械载荷环境下的金属/陶瓷功能梯度材料涂层板进行安定性分析,并获得其安定载荷区域,为其工程安全使用提供一定的理论依据。方法在已有工作基础上,采用分段指数函数模型描述梯度涂层板中的材料热物参数空间梯度分布,基于静力安定理论建立梯度涂层板弹性区域的理论分析模型和安定区域的理论分析模型,通过编程数值计算,结合自平衡的残余应力场和板内应力分布情况,分析了Al/SiC功能梯度材料涂层板的安定区域。结果计算分析出Al/SiC功能梯度材料涂层板弹性区域边界和安定区域边界,其中安定区域边界由两部分组成,一部分为Shakedown-Reversed Plasticity boundary(S-RP),另一部分为Shakedown-IncrementalCollapseboundary(S-IC),并得到处于安定情况下所能承受的极限热载增量为(35)q=154 4.0℃,单位厚度下所能承受的极限机械载荷为=6167.3 N/mmxP。涂层板上表面热物理性能最弱,最容易发生塑性循环变形破坏。结论根据安定分析结果,可预先选择功能梯度涂层板所能使用的热机械环境,为涂层板的安全使用提供可靠的理论依据。另外,为得到更佳的安定区域和适应更苛刻的热机械环境,安定分析结果可对涂层板制备优化设计提供较好的参考。
        The work aims to analyze the shakedown of metal/ceramic functionally graded material coating plate under thermo-mechanical loading and obtain its shakedown area, so as to provide theoretical basis for its safe using in engineering. Based on the previous work, the piecewise exponential function models were given to describe the space graded distribution of material thermal and physical parameters in the graded coating plate. Then, based on the static shakedown theory, the theoretical analysis model for elastic region and shakedown region of graded coating plate was established. Combined with stress distribution of graded coating plate and the balance of residual stress field, shakedown of Al/SiC functionally graded material coating plate was analyzed through the programmed numerical computation. The elastic region boundary and the shakedown region boundary of Al/SiC functionally graded material coating plate were obtained by computational analysis. The shakedown region boundary consisted of two parts, the Shakedown-Reversed Plasticity boundary(as S-RP) and the Shakedown-Incremental Collapse boundary(as S-IC). The extreme thermal load increment q(28)(35)154.04 ℃ and the mechanical loading limits of unit thickness =6167.3 N/mmxP of the graded coating plate were obtained in the shakedown condition. The thermal and physical properties of coating plate at the upper surface was the weakest, and plastic cyclic deformation was most likely to occur on this surface. According to the results of shakedown analysis, thermal mechanical environment can be pre-selected for the functionally graded coating plate so as to provide the reliable theoretical basis for the safe using. To get better shakedown area and adapt to more serious thermal mechanical environment, shakedown analysis results can provide a well reference for optimization design of graded coating plate preparation.
引文
[1]韩杰才,徐丽,王保林,等.梯度功能材料的研究进展及展望[J].固体火箭技术,2004,27(3):207-215.HAN Jie-cai,XU Li,WANG Bao-lin,et al.Progress and prospects of functional gradient materials[J].Journal of solid rocket technology,2004,27(3):207-215.
    [2]陈东,杨光义,王国元,等.功能梯度材料的进展[J].青岛建筑工程学院学报,2001(4):92-95.CHEN Dong,YANG Guang-yi,WANG Guo-yuan,et al.The development of functionally gradient materials[J].Journal of Qingdao Institute of Architecture and Engineering,2001(4):92-95.
    [3]刘英凯,程站起.功能梯度材料热传导问题的近场动力学模型[J].力学季刊,2018,39(1):82-89.LIU Ying-kai,CHENG Zhan-qi.Transient heat conduction model for functionally graded materials based on peridynamics[J].Chinese quarterly mechanics,2018,39(1):82-89.
    [4]王保林,杜善义,韩杰才.功能梯度材料的热/机械耦合分析研究进展[J].力学进展,1999(4):528-548.WANG Bao-lin,DU Shan-yi,HAN Jie-cai.Thermomechanical coupling analysis advances of functionally graded material Structure[J].Advances in mechanics,1999(4):528-548.
    [5]林文松.功能梯度材料涂层制备技术的研究进展[J].表面技术,2004(4):7-9.LIN Wen-song.Development of preparation technology of functionally gradient materials[J].Surface technology,2004(4):7-9.
    [6]付永信,王建江,杜心康,等.热喷涂技术制备功能梯度材料涂层的发展状况[J].材料保护,2006(6):41-44.FU Yong-xin,WANG Jian-jiang,DU Xin-kang,et al.Review on current state and development of thermally sprayed functional gradient coatings[J].Material protection,2006(6):41-44.
    [7]ATASHIPOUR S A,SBURLATI R,ATASHIPOUR S R.Elastic analysis of thick-walled pressurized spherical vessels coated with functionally graded materials[J].Meccanica,2014,49(12):2965-2978.
    [8]WANG Z,ZHANG Q,XIA L,et al.Thermomechanical analysis of pressure vessels with functionally graded material coating[J].Journal of pressure vessel technology-transactions of the ASME,2016,138(11201):1-10.
    [9]CHOI K,KIM H,PARK C,et al.High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating:Experimental and modeling results[J].Metals and materials international,2016,22(5):817-824.
    [10]HAN Q,WANG Z,NASH D H,et al.Thermal buckling analysis of cylindrical shell with functionally graded material coating[J].Composite structures,2017,181:171-182.
    [11]MAO J J,KE L L,YANG J,et al.The coupled thermoelastic instability of FGM coatings with arbitrarily varying properties in-plane sliding[J].Acta mechanica,2018(4):1-17.
    [12]MAO J,KE L,YANG J,et al.Thermoelastic instability of functionally graded coating with arbitrarily varying properties considering contact resistance and frictional heat[J].Applied mathematical modelling,2017,43:1689.
    [13]ESKANDARI H.Three-dimensional investigation of cracked tubes coated with functionally graded material under shock loading[J].Journal of the Brazilian society of mechanical sciences and engineering,2018,40(9):432.
    [14]PEYMAN F,VAHID B,MAHID K.Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders[J].Structural engineering and mechanics,2017,55(6):1086-1097.
    [15]钱令希,王志必.板壳极限分析和安定分析--温度参数法[J].力学学报,1989,21(2):118-124.QIAN Ling-xi,WANG Zhi-bi.Limit analysis and shakedown analysis of bending plates and rotational shellmethod of temperature parameters[J].Chinese journal of theoretical and applied mechanics,1989,21(2):118-124.
    [16]ZHENG Heng-wei,PENG Xiang-he,HU Ning.Analysis for shakedown of functionally graded plate subjected to thermal-mechanical loading with piecewise-exponential distribution of material properties[J].Computer modeling in engineering&sciences,2012,86(6):505-531.
    [17]郑恒伟.耦合热力荷载下功能梯度材料板的安定性分析及优化[D].重庆:重庆大学,2013.ZHENG Heng-wei.Shakedown analysis and optimization of functionally graded plates subjected to coupled thermal and mechanical loading[D].Chongqing:Chongqing University,2013.
    [18]GUO L C,NODA N,WU L Z.Modeling method for a crack problem of function-ally graded materials with arbitrary properties piecewise-exponential model[J].International journal of solids and structures,2007,44:6768-6790.
    [19]JU J W,CHEN T M.Effective elastic moduli of twophase composites containing randomly dispersed spherical in homogeneities[J].Acta metallurgica,1994,103(1-4):123-144.
    [20]CHO J R,ODEN J T.Functionally graded material:Aparametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme[J].Computer methods in applied mechanics and engineering,2000,188:17-38.
    [21]BREE J.Elastic plastic behavior of thin tubes subjected to internal pressure and intermittent high heat fluxes with application to fast nuclear reactor fuel elements[J].Journal of strain analysis,1967,2:226-238.
    [22]SHEN Y L.Thermal expansion of metal-ceramic composites:A three dimensional analysis[J].Materials science and engineering,1998,A252:269-275.