稳健性和轻量化在车门结构优化设计中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Robustness and Lightweight in Optimal Design of Door Structure
  • 作者:王栋 ; 王丽娟 ; 陈宗渝 ; 吴晓东 ; 张沈生
  • 英文作者:Wang Dong;Wang Lijuan;Chen Zongyu;Wu Xiaodong;Zhang Shensheng;School of Mechanical and Electrical Engineering, Nanchang University;
  • 关键词:车门 ; 响应面 ; 6σ稳健性 ; 轻量化
  • 英文关键词:door;;response surface;;six sigma robustness;;lightweight
  • 中文刊名:JXKX
  • 英文刊名:Mechanical Science and Technology for Aerospace Engineering
  • 机构:南昌大学机电工程学院;
  • 出版日期:2018-10-16 17:26
  • 出版单位:机械科学与技术
  • 年:2019
  • 期:v.38;No.290
  • 基金:国家自然科学基金项目(51165034);; 江西省自然科学基金项目(20132BAB206029)资助
  • 语种:中文;
  • 页:JXKX201904021
  • 页数:8
  • CN:04
  • ISSN:61-1114/TH
  • 分类号:140-147
摘要
目前多数的轻量化研究,通常基于尺寸、形状、位置等某一单方面的设计因素展开,而忽略了各因素之间的交互性。另外,设计变量在制造生产过程中不可避免的存在一定范围内的波动。针对现有车门产品,结合多种类的设计因素,并考虑设计变量的波动对产品性能的影响,采用试验设计方法构造高精度的响应面模型,结合多岛遗传算法、蒙特卡罗模拟技术,对车门结构进行6σ稳健性与轻量化改进设计。结果表明,本研究在减轻车门质量的同时显著提高了产品性能及性能的稳健性。
        Most of the current lightweight studies are usually based on a single design factor, such as size, shape, position, and so on, while ignoring the interactivity between the factors. In addition, design variables inevitably fluctuate in a certain range in the manufacturing process. For the existing door products, combining the variety of design factors, and the effect of the fluctuation of design variables on the performance of the product is considered. The high precision response surface model is constructed by the experimental design method, and the six sigma robust and lightweight design of the door structure is improved by combining the multi-island genetic algorithm and Monte Carlo simulation technology. As a result, the quality of the door is reduced and the robustness of the product is improved.
引文
[1] 刘玉山,徐安平,富大伟,等.基于预偏移的激光拼焊板焊缝优化补偿方法[J].机械工程学报,2012,48(16):59-63Liu Y S, Xu A P, Fu D W, et al. Pre-offset-based approach to optimizing and compensating weld-line of tailor-welded blanks[J]. Journal of Mechanical Engineering, 2012,48(16):59-63 (in Chinese)
    [2] 朱茂桃,朱彩帆,郭佳欢,等.基于6σ稳健性的轧制差厚板车门优化设计[J].中国机械工程,2017,28(8):996-1001Zhu M T, Zhu C F, Guo J H, et al. Optimization design of TRB car doors based on 6σ robustness[J]. China Mechanical Engineering, 2017,28(8):996-1001 (in Chinese)
    [3] Baril C, Yacout S, Clément B. Design for six sigma through collaborative multiobjective optimization[J]. Computers & Industrial Engineering, 2011,60(1):43-55
    [4] 崔杰,张维刚,常伟波,等.基于双响应面模型的碰撞安全性稳健性优化设计[J].机械工程学报,2011,47(24):97-103Cui J, Zhang W G, Chang W B, et al. Robustness optimization for crash safety based on dual-response surface model[J]. Journal of Mechanical Engineering, 2011,47(24):97-103 (in Chinese)
    [5] 谢晖,刘行,洪健程.基于Taguchi方法的车门结构稳健性优化[J].中国机械工程,2013,24(12):1676-1681Xie H, Liu X, Hong J C. Robust optimization of automotive door structure based on Taguchi method[J]. China Mechanical Engineering, 2013,24(12):1676-1681 (in Chinese)
    [6] 贺新峰,于德介,肖枚清.基于响应面的结构疲劳寿命6σ稳健优化设计[J].汽车工程,2014,36(3):368-373,377He X F, Yu D J, Xiao M Q. Six-sigma robust design of structural fatigue life based on response surface method[J]. Automotive Engineering, 2014,36(3):368-373,377 (in Chinese)
    [7] Gu X G, Sun G Y, Li G Y, et al. A comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure[J]. Structural and Multidisciplinary Optimization, 2013,48(3):669-684
    [8] Yoon T H, Kim H, Heo C, et al. An experiment and FE simulation for the development of a SPFC1180 AHSS one-body door impact beam about a car side collision[J]. International Journal of Precision Engineering and Manufacturing, 2016,17(1):81-89
    [9] Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization[J]. Structural and Multidisciplinary Optimization, 2004,26(3-4):235-248
    [10] 李玉强,崔振山,陈军,等.基于响应面模型的6σ稳健设计方法[J].上海交通大学学报,2006,40(2):201-205Li Y Q, Cui Z S, Chen J, et al. Six sigma robust design methodology based on response surface model[J]. Journal of Shanghai JiaoTong University, 2006,40(2):201-205 (in Chinese)
    [11] 王嵌,杨济匡,郭杰.轿车车门防撞杆结构优化的研究[J].汽车工程, 2010,32(12):1047-1052Wang Q, Yang J K, Guo J. A study on the structural optimization of side door bar for a passenger car[J]. Automotive Engineering, 2010,32(12):1047-1052 (in Chinese)
    [12] 高云凯,申振宇,冯兆玄,等.多目标优化在车门轻量化设计中的应用[J].同济大学学报:自然科学版,2017,45(2):275-280,308Gao Y K, Shen Z Y, Feng Z X, et al. Application of multi-objective optimization in vehicle door lightweight[J]. Journal of Tongji University:Natural Science, 2017,45(2): 275-280,308 (in Chinese)
    [13] 王嵌,杨济匡,郭杰.轿车车门防撞杆结构优化的研究[J].汽车工程,2010,32(12):1047-1052Wang Q, Yang J K, Guo J. A study on the structural optimization of side door bar for a passenger car[J]. Automotive Engineering, 2010,32(12):1047-1052 (in Chinese)
    [14] 侯飞,高卫民.基于计算机模拟的轿车侧门防撞杆对美国侧撞法规作用的研究[J].汽车工程,2005,27(1):47-49,96Hou F, Gao W M. Simulation on crashworthiness of car door impact bars in terms of FMVSS214 requirements[J]. Automotive Engineering, 2005,27(1):47-49,96 (in Chinese)
    [15] 孙光永,李光耀,张勇,等.基于鲁棒性的概率优化设计在薄壁构件耐撞性中的应用[J].中国机械工程,2007,18(4):479-483Sun G Y, Li G Y, Zhang Y, et al. Application study on robust-based probabilistic optimization design in thin-walled structure of crashworthiness[J]. China Mechanical Engineering, 2007,18(4):479-483 (in Chinese)