磷渣胶凝材料高温力学性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Properties of Mortars Containing Phosphorus Slag after Exposure to High Temperatures
  • 作者:张敏 ; 马倩敏 ; 史天尧 ; 翟莹 ; 黄丽萍 ; 林志伟 ; 颜峰 ; 郭荣鑫
  • 英文作者:Zhang Min;Ma Qianmin;Shi Tianyao;Zhai Ying;Huang Liping;Lin Zhiwei;Yan Feng;Guo Rongxin;Yunnan Key Laboratory of Disaster Reduction in Civil Engineering, Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology;College of Materials Science and Engineering, Chongqing University;
  • 关键词:磷渣 ; 高温 ; 爆裂 ; 质量损失 ; 残余抗压强度 ; 残余抗折强度
  • 英文关键词:phosphorus slag;;high temperature;;spalling;;mass loss;;residual compressive strength;;residual flexural strength
  • 中文刊名:FJSK
  • 英文刊名:Non-Metallic Mines
  • 机构:昆明理工大学建筑工程学院云南省土木工程防灾重点实验室(筹);重庆大学材料科学与工程学院;
  • 出版日期:2018-11-20
  • 出版单位:非金属矿
  • 年:2018
  • 期:v.41;No.251
  • 基金:国家自然科学基金(51502121,11562010);; 昆明理工大学引进人才基金资助项目(KKSY201406112)
  • 语种:中文;
  • 页:FJSK201806004
  • 页数:5
  • CN:06
  • ISSN:32-1144/TD
  • 分类号:16-20
摘要
利用工业固体废弃物磷渣制备无机胶凝材料,并对其胶砂试件的高温力学性能进行了实验研究。分别制备了普通硅酸盐水泥--磷渣复合胶凝体系(PSC-x,磷渣取代量分别为0、20%、40%和60%)和碱激发磷渣胶凝体系(PSA-x,Na OH溶液浓度分别为6 mol/L、8 mol/L、10mol/L和12 mol/L),测试了常温及200℃、400℃、600℃、800℃、1 000℃、1 200℃高温作用后胶砂试件的质量损失、抗折强度和抗压强度。结果表明:PSA-x胶凝体系的质量损失低于PSC-x体系。PSA-x体系有着较好的耐高温性能,1 200℃作用后,PSA-x的残余抗折强度可达到常温时的35%~75%,残余抗压强度可达到常温时的45%~63%。
        Phosphorus slag was used to manufacture mortar specimens and their mechanical properties after exposure to high temperatures were studied. Portland cement-phosphorus slag composite system(PSC-x, replacements of phosphorus slag were 0, 20%, 40% and 60%, respectively) and alkali-activated phosphorus slag system(PSA-x, concentrations of NaOH solution were 6 mol/L, 8 mol/L, 10 mol/L and 12 mol/L, respectively) were prepared, respectively. Their mass loss, flexural strength and compressive strength were tested at room temperature and after exposure to 200 ℃, 400 ℃, 600 ℃, 800 ℃, 1 000 ℃ and 1 200 ℃, respectively. The results show that the mass loss of PSA-x system was lower than that of PSC-x system. After 1200 ℃, PSA-x system still had 35%-75% flexural strength and 45%-63% compressive strength remained, indicating that such system had a good resistance to high temperature.
引文
[1]刘秋美.磷渣粉在混凝土中的应用研究[D].贵州:贵州大学,2007.
    [2]冷发光,冯乃谦.磷渣综合利用的研究与应用现状[J].中国建材科技,1999(3):43-46.
    [3]徐田娟,栗静静.磷矿渣掺合料性能试验研究[J].新型建筑材料,2012,39(9):14-18.
    [4]程麟,朱成桂,盛广宏.碱磷渣水泥的力学性能及微观结构[J].硅酸盐学报,2006,34(5):604-609.
    [5] ALLAHVERDI A, PILEHVAR S, MAHINROOSTA M. Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement[J]. Powder Technology,2016, 288:132-139.
    [6] MA Q, GUO R, ZHAO Z, et al. Mechanical properties of concrete at high temperature—A review[J]. Construction&Building Materials,2015, 93:371-383.
    [7] CASTELLANO C C, BONAVETTI V L, DONZA H A, et al. The effect of w/b and temperature on the hydration and strength of blastfurnace slag cements[J]. Construction&Building Materials, 2016, 111:679-688.
    [8] MENDES A, SANJAYAN J G, GATES W P, et al. The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event[J]. Cement&Concrete Composites, 2012, 34(9):1067-1074.
    [9]韩方晖,刘娟红,阎培渝.温度对水泥-矿渣复合胶凝材料水化的影响(英文)[J].硅酸盐学报, 2016, 44(8):1071-1080.
    [10] DONATELLO S, KUENZEL C, PALOMO A, et al. High temperature resistance of a very high volume fly ash cement paste[J]. Cement&Concrete Composites, 2014, 45(1):234-242.
    [11] YAZICI S, SEZER G S, SENGüL H. The effect of high temperature on the compressive strength of mortars[J]. Construction&Building Materials, 2012, 35(35):97-100.
    [12]傅博.碱矿渣混凝土耐高温性能研究[D].重庆:重庆大学,2014.
    [13] MA Q, DU H, ZHOU X, et al. Performance of copper slag contained mortars after exposure to elevated temperatures[J]. Construction&Building Materials, 2018, 172:378-386.
    [14]张冰,杨林,杨松,等.磷渣砂特性及其对砂浆性能的影响[J].贵州大学学报(自然科学版),2014,31(2):108-111.
    [15]魏莹,李兆锋,李丙明,等.磷渣对水泥混凝土性能的影响及机理探讨[J].硅酸盐通报,2008(4):822-826.
    [16]马保国,王耀城,穆松,等.水泥基材料瞬时高温作用下的爆裂与力学性能[J].土木建筑与环境工程,2013(4):109-113.
    [17]周芳.掺磷渣粉混凝土的性能研究[D].武汉:武汉理工大学,2011.
    [18]李志清.碱磷渣胶凝材料的研究[D].南京:河海大学,2006.
    [19]刘振坤,李志昂.粉煤灰对高温后UHTCC试块抗折强度的影响[J].中国建材科技,2014,23(3):64-66.
    [20]朱成桂.碱-磷渣胶凝材料研究[D].南京:南京工业大学,2006.
    [21]曹集舒.硅酸盐水泥耐高温性能研究[J].硅酸盐通报,2017,36(4):1452-1456.