堆芯熔融下反应堆压力容器结构失效模式探讨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Structural Failure Mode of Reactor Pressure Vessel Under Severe Core Meltdown Accident
  • 作者:朱建伟 ; 毛剑峰 ; 李曰兵 ; 包士毅 ; 高增梁
  • 英文作者:ZHU Jianwei;MAO Jianfeng;LI Yuebing;BAO Shiyi;GAO Zengliang;Institute of Process Equipment and Control Engineering,Zhejiang University of Technology;School of Mechatronics and Automobile Engineering,Huzhou Vocational & Technical College;Engineering Research Center of Process Equipment and Its Re-manufacturing,Ministry of Education,Zhejiang University of Technology;
  • 关键词:反应堆压力容器 ; 堆内滞留 ; 塑性失效 ; 高温蠕变失效 ; 失效模式
  • 英文关键词:reactor pressure vessel;;in-vessel retention;;plastic failure;;high-temperature creep failure;;failure mode
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:浙江工业大学化工机械设计研究所;湖州职业技术学院机电与汽车工程学院;浙江工业大学过程装备及其再制造教育部工程研究中心;
  • 出版日期:2017-04-15
  • 出版单位:动力工程学报
  • 年:2017
  • 期:v.37;No.268
  • 基金:国家自然科学基金资助项目(51575489,51505425);; 浙江省公益类重点资助项目(2014C23001);; 湖州市自然科学基金资助项目(2014YZ03);; 浙江省教育厅一般科研资助项目(Y201636414)
  • 语种:中文;
  • 页:DONG201704013
  • 页数:6
  • CN:04
  • ISSN:31-2041/TK
  • 分类号:84-89
摘要
利用有限元方法分析了堆芯熔融严重事故下反应堆压力容器(RPV)器壁的应力分布,探讨了RPV结构的失效模式,提出了RPV结构分层失效模型,可将RPV沿壁厚由内到外分为5个层面,即熔化区、高温蠕变主导区、压缩塑性主导区、弹性区和拉伸塑性区.分析了RPV塑性失效和高温蠕变失效的影响因素,并给出了塑性失效和高温蠕变失效的载荷条件.结果表明:内压是塑性失效的主要影响因素,随着内压增大,RPV壁内弹性层会逐渐减小,弹性层消失时对应的内压即为塑性失效的载荷条件;在蠕变条件下,当内压达到一定值后,截面塑性区、蠕变应变和塑性应变迅速增大,RPV达到极限状态,此时的内压即为高温蠕变失效的载荷条件.
        To evaluate the structural integrity of a reactor pressure vessel(RPV)bearing complicated and dangerous loads under severe core meltdown accident,various analyses were conducted,including an analysis on the stress distribution across the RPV wall using finite element method,and a study on the failure mode with a multi-layered failure model proposed,suggesting that the RPV wall could be divided into five layers from inner to outer wall along its thickness,namely,molten layer,high-temperature creep dominated layer,compressed plastic dominated layer,elastic layer,and tensile plastic layer,etc.Meanwhile,factors influencing the plastic failure and high-temperature creep failure of RPV were analyzed,during which load conditions of both the failures were obtained.Results show that the internal pressure is the main factor affecting the RPV plastic failure.With the rise of internal pressure,the elastic layer in RPV wall grad-ually reduces,and when the elastic layer disappears,the corresponding internal pressure is considered as the load condition of plastic failure.Whereas,under creep conditions,once the internal pressure gets up to a certain value,the plastic layer,the creep strain and the plastic strain on RPV wall cross section increases rapidly,and the RPV promptly reaches its limit state,when the corresponding internal pressure is considered as the load condition of high-temperature creep failure.
引文
[1]MA Weimin,YUAN Yidan,SEHGAL B R.In-vessel melt retention of pressurized water reactors:historical review and future research needs[J].Engineering,2016,2(1):103-111.
    [2]姚彦贵,宁冬,武志玮,等.假想堆芯熔化严重事故下反应堆压力容器完整性的研究进展与建议[J].核技术,2013,36(4):040615-1-6.YAO Yangui,NING Dong,WU Zhiwei,et al.Research progress and recommendations on reactor pressure vessel integrity under hypothetical core melt down accident[J].Nuclear Techniques,2013,36(4):040615-1-6.
    [3]MAO J F,ZHU J W,BAO S Y,et al.Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario[J].International Journal of Pressure Vessels and Piping,2016,139-140:107-116.
    [4]THEOFANOUS T G,LIU C,ADDITON S,et al.In-vessel coolability and retention of a core melt[J].Nuclear Engineering and Design,1997,169(1/2/3):l-48.
    [5]ESMAILI H,KHATIB-RAHBAR M.Analysis of in-vessel retention and ex-vessel fuel coolant interaction for AP1000[R].NUREG/CR-6849.Rockville,Maryland,USA:Energy Research,Inc.,2004.
    [6]ZHANG Y P,QIU S Z,SU G H,et al.Analysis of safety margin of in-vessel retention for AP1000[J].Nuclear Engineering and Design,2010,240(8):2023-2033.
    [7]REMPE J,KNUDSON D L.Margin for in-vessel retention in the APR1400-VESTA and SCDAP/RELAP5-3D?analyses[R].INEEL/EXT-04-02549.Idaho Falls,USA:Idaho National Engineering and Environmental Laboratory,2004.
    [8]金越,鲍晗,刘晓晶,等.大功率先进压水堆IVR有效性评价分析[J].核动力工程,2015,36(3):135-141.JIN Yue,BAO Han,LIU Xiaojing,et al.Assessment of in-vessel retention for advanced large size PWRs[J].Nuclear Power Engineering,2015,36(3):135-141.
    [9]KIM T H,KIM S H,CHANG Y S.Structural assessment of reactor pressure vessel under multi-layered corium formation conditions[J].Nuclear Engineering and Technology,2015,47(3):351-361.
    [10]Government of Japan.Report of Japanese government to the IAEA ministerial conference on nuclear safetythe accident at TEPCO's Fukushima nuclear power stations[R].Vienna,Austria:Nuclear Emergency Response Headquarters,2011.
    [11]SEHGAL B R.Nuclear safety in light water reactors:severe accident phenomenology[M].Waltham,USA:Academic Press,2012:48-49,146-152.
    [12]武志玮,宁冬,姚伟达.严重事故下反应堆压力容器材料高温蠕变研究进展[J].核安全,2011(2):20-24.WU Zhiwei,NING Dong,YAO Weida.Research progress on high-temperature creep behavior of reactor pressure vessel[J].Nuclear Safety,2011(2):20-24.
    [13]MAO J F,ZHU J W,BAO S Y,et al.Study on structural failure of RPV with geometric discontinuity under severe accident[J].Nuclear Engineering and Design,2016,307:354-363.
    [14]ZHU Jianwei,BAO Shiyi,LI Yuebing,et al.Creep analysis of hemisphere shell structure under high temperature gradient[C]//Proceedings of the ASME 2014Pressure Vessels and Piping Conference.Anaheim,California,USA:ASME,2014.
    [15]朱建伟.堆芯熔融条件下反应堆压力容器的结构失效模式研究[D].杭州:浙江工业大学,2015.
    [16]毛剑峰,王炜哲,张军辉,等.汽轮机螺栓松弛对汽缸蠕变强度的影响[J].动力工程学报,2013,33(2):107-111.MAO Jianfeng,WANG Weizhe,ZHANG Junhui,et al.Influence of bolt relaxation on creep strength of turbine casings[J].Journal of Chinese Society of Power Engineering,2013,33(2):107-111.