京津冀夏季强降水下冰云宏微观特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Macrophysical and microphysical properties of ice clouds during heavy rainfalls in Beijing-Tianjin-Hebei region in summer
  • 作者:郑倩 ; 郑有飞 ; 王立稳 ; 李特 ; 林彤 ; 杜傢义
  • 英文作者:ZHENG Qian;ZHENG You-fei;WANG Li-wen;LI Te;LIN Tong;DU Jia-yi;School of Atmospheric Physics,Nanjing University of Information Science & Technology;Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing University of Information Science & Technology;School of Environmental Science and Engineering,Nanjing University of Information Science & Technology;
  • 关键词:京津冀 ; 夏季 ; 冰云 ; 强降水 ; 宏微观特征
  • 英文关键词:Beijing-Tianjin-Hebei;;summer;;ice clouds;;heavy rainfall;;macrophysical and microphysical properties
  • 中文刊名:GHDL
  • 英文刊名:Arid Land Geography
  • 机构:南京信息工程大学大气物理学院;江苏省大气环境监测与污染控制高技术研究重点实验室;南京信息工程大学江苏省大气环境与装备技术协同创新中心;南京信息工程大学环境科学与工程学院;
  • 出版日期:2019-01-15
  • 出版单位:干旱区地理
  • 年:2019
  • 期:v.42;No.183
  • 基金:国家自然科学基金项目(41590873)
  • 语种:中文;
  • 页:GHDL201901008
  • 页数:10
  • CN:01
  • ISSN:65-1103/X
  • 分类号:69-78
摘要
根据Aqua MODIS 2级云产品和Cloudsat的2级产品资料,结合降水数据和MODIS L1B级辐射率数据,对发生在京津冀地区夏季的三次强降水过程中冰云的宏微观物理量的特征进行分析,并探究这些物理量和降水强度的关系。结果表明:在水平分布中,强降水过程中降水强度高值区内云相为冰云,冰云云顶高度在8~17 km,冰云粒子有效半径、冰云光学厚度、冰水路径分别最高可达60μm、150、5 000 g·m-2;冰云光学厚度、冰水路径、冰云云顶高度随降水强度增大而增大。在垂直分布中,冰云主要分布在3. 5 km以上,发生强降水站点的冰云为深对流云,冰云粒子有效半径、冰水含量、冰云粒子数浓度分别最高可达150μm、3 000 mg·m-3、500 L-1;冰云粒子有效半径高值区存在于云层中下部,且随高度上升而减小,冰云粒子数浓度高值区存在于云层中上部,且随高度上升而增加,冰水含量高值区则存在于云层中部;冰云粒子有效半径、冰水含量、冰云粒子数浓度在9 km以上随降水强度增大而增大。
        Heavy rainfall is one of the main weathers in Beijing-Tianjin-Hebei region in summer. The macrophysical and microphysical properties of ice clouds are of great significance during the process of precipitation. This paper selects three heavy rainfall processes occurred in the Beijing-Tianjin-Hebei region to analyze the horizontal and vertical distribution of macrophysical and microphysical properties of ice clouds and to explore the variation of relationship between these variables and precipitation intensity. The data set in this paper is consist of a merged precipitation product developed by National Meterological Information Center of China,Aqua MODIS level 2 cloud product,CloudSat level 2 product,and MODIS L1 B radiance data. The results show that in the horizontal distribution,the clouds with high precipitation intensity during a heavy rainfall are whiter,brighter,and relatively thicker. The cloud phase corresponding to the high precipitation intensity area is ice,but the proportion of ice clouds in the whole Beijing-Tianjin-Hebei region does not change with the precipitation intensity. The ice cloud top height ranges from 8 km to 17 km. The maximum of particle effective radius,optical thickness,and ice water path of ice clouds are up to 60 m,150,5 000 g·m-2respectively. The optical thickness,ice water path,cloud top height of ice clouds and precipitation intensity are positively correlated,but the particle effective radius of ice clouds is not correlated with precipitation intensity. In the vertical distribution,the ice clouds are mainly located above 3. 5 km,and the high precipitation intensity is consistent with the thickness and cloud top height of ice clouds. The ice clouds at the station of heavy rainfall are deep convective clouds. The maximum of particles effective radius,particle number concentration,and ice water content of ice clouds are up to 150 μm,500 L-1,3 000 mg·m-2respectively. The highest particle effective radius of ice clouds is located in the middle and lower layers of the cloud,and is decreased with height. The highest particle number concentration of ice clouds is located in the upper layer of the cloud,and is increased with height. The highest ice water content of ice clouds is located in the middle of the cloud. The particles effective radius,particle number concentration,and ice water content of ice clouds above 9 km are positively correlated with precipitation intensity.
引文
[1]温煦.京津冀地区暖季降水特征分析[D].兰州:兰州大学,2016.[WEN Xu. Characteristics of warm-season precipitation over Beijing-Tianjin-Hebei[D]. Lanzhou:Lanzhou University,2016.]
    [2]鲍超,贺东梅.京津冀城市群水资源开发利用的时空特征与政策启示[J].地理科学进展,2017,36(1):58-67.[BAO Chao,HE Dongmei. Spatiotemporal characteristics of water resources exploitation and policy implications in the Beijing-Tianjin-Hebei Urban Agglomeration[J]. Progress in Geography,2017,36(1):58-67.]
    [3]孙继松,何娜,王国荣,等.“7·21”北京大暴雨系统的结构演变特征及成因初探[J].暴雨灾害,2012,31(3):218-225.[SUN Jisong,HE Na,WANG Guorong,et al. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012[J]. Torrential Rain Disasters,2012,31(3):218-225.]
    [4]孙建华,赵思雄,傅慎明,等. 2012年7月21日北京特大暴雨的多尺度特征[J].大气科学,2013,27(3):705-718.[SUN Jianhua,ZHAO Sixiong,FU Shenming,et al. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21,2012[J]. Chinese Journal of Atmospheric Sciences,2013,37(3):705-718.]
    [5]冉令坤,齐彦斌,郝寿昌,“7·21”暴雨过程动力因子分析和预报研究[J].大气科学,2014,38(1):83-100.[RAN Lingkun,QI Yanbin,HAO Shouchang. Analysis and forecasting of heavy rainfall case on 21 July 2012 with dynamical parameters[J]. Chinese Journal of Atmospheric Sciences,2014,38(1):83-100.]
    [6]王坚红,杨艺亚,苗春生,等.华南沿海暖区辐合线暴雨地形动力机制数值模拟研究[J].大气科学,2017,41(4):784-796.[WANG Jianhong,YANG Yiya,MIAO Chunsheng,et al. The numerical study of terrain dynamic influence on warm area heavy rainfall of convergence lines in south China coast[J]. Chinese Journal of Atmospheric Sciences,2017,41(4):784-796.]
    [7]齐彦斌,郭学良,金德镇.一次东北冷涡中对流云带的宏微物理结构探测研究[J].大气科学,2007,31(4):621-634.[QI Yanbin,GUO Xueliang,JIN Dezhen. An observational study of macro/microphysical structures of convective rainbands of a cold vortex over northeast China[J]. Chinese Journal of Atmospheric Sciences,2007,31(4):621-634.]
    [8]周毓荃,蔡淼,欧建军,等.云特征参数与降水相关性的研究[J].大气科学学报,2011,34(6):641-652.[ZHOU Yuquan,CAI Miao,OU Jianjun,et al. Correlation between cloud characteristic parameters and precipitation[J]. Transactions of Atmospheric Sciences,2011,34(6):641-652.]
    [9]任建奇,严卫,叶晶,等.云相态的卫星遥感研究进展[J].地球科学进展,2010,25(10):1051-1060.[REN Jianqi,YAN Wei,YE Jing,et al. Advances in the study of cloud phase discrimination using satellite remote sensing data[J]. Advances in Earth Science,2010,25(10):1051-1060.]
    [10]周晓丽,胡列群,马丽云,等.基于FY3A资料的天山山区暴雨云相态分析[J].干旱区地理,2014,37(4):667-675.[ZHOU Xiaoli,Hu Liequn,MA Liyun,et al. Storm cloud phase in the Tianshan Mountains areas based on FY3A data[J]. Arid Land Geography,2014,37(4):667-675.]
    [11]刘健,董超华,朱元竞,等. FY-1C资料在云顶粒子热力学相态分析中的应用研究[J].大气科学,2003,27(5):901-908.[LIU Jian,DONG Chaohua,ZHU Yuanjing,et a1. Thermodynamicphase analysis of cloud particles with FY-1C data[J]. Chinese Journal of Atmospheric Sciences,2003,27(5):901-908.]
    [12]周非非,洪延超,赵震.一次层状云系水分收支和降水机制的数值研究[J].气象学报,2010,68(2):182-194.[ZHOU Feifei,HONG Yanchao,ZHAO Zhen. A numerical study of the moisture budget and the mechanism for precipitation for a stratiform cloud system[J]. Acta Meteorologica Sinica,2010,68(2):182-194.]
    [13]梁军,张胜军,王树雄,等.大连地区一次区域暴雪的特征分析和数值模拟[J].高原气象,2010,29(3):744-754.[LIANG Jun,ZHANG Shengjun,WANG Shuxiong,et al. Characteristic analysis and numerical simulation of a snowstorm in Dalian region[J]. Plateau Meteorology,2010,29(3):744-754.]
    [14]张萍.云卫星资料在天山山区降雨云研究中的应用[D].上海:东华大学,2012.[ZHANG Ping. Application of CloudSat data in the study of rainfall clouds over Tianshan Mountains[D].Shanghai:Donghua University,2012.]
    [15]邓军英.云卫星在降水云研究中的应用[D].上海:东华大学,2014.[Deng Junying. Application of CloudSat in the study of precipitation clouds[D]. Shanghai:Donghua University,2014.]
    [16]何金海,郭品文,银燕,等.大气科学概论[M].北京:气象出版社,2012:195-214.[HE Jinhai,GUO Pinwen,YIN Yan,et al.Introduction to atmospheric science[M]. Beijing:China Meteorological Press,2012:195-214.]
    [17] KOTARBA A Z. A comparison of MODIS-derived cloud amount with visual surface observations[J]. Atmospheric Research,2009,92(4):522-530.
    [18] TANG X,CHEN B. Cloud types associated with the Asian summer monsoons as determined from MODIS/TERRA measurements and a comparison with surface observations[J]. Geophysical Research Letters,2006,33(7):359-377.
    [19] MEYER K,YANG P,Gao B C. Tropical ice cloud optical depth,ice water path,and frequency fields inferred from the MODIS level-3 data[J]. Atmospheric Research,2007,85(2):171-182.
    [20]杨冰韵,张华,彭杰,等.利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J].高原气象,2014,33(4):1105-1118.[YANG Bingyun,ZHANG Hua,PENG Jie,et al. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J]. Plateau Meteorology,2014,33(4):1105-1118.]
    [21]张华,杨冰韵,彭杰,等.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学,2015,39(2):235-248.[ZHANG Hua,YANG Bingyun,PENG Jie,et al. The characteristics of cloud microphysical properties in east Asia with the CloudSat dataset[J]. Chinese Journal of Atmospheric Sciences,2015,39(2):235-248.]
    [22] GRENIER P,BLANCHET J P,MUNOZ-ALPIZAR R. Study of polar thin ice clouds and aerosols seen by CloudSat and CALIPSO during midwinter 2007[J]. Journal of Geophysical Research:Atmospheres,2009,114(D9).
    [23] HAM S H,SOHN B J,KATO S,et al. Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations[J]. Journal of Geophysical Research:Atmospheres,2013,118(17):9930-9947.
    [24]赵姝慧.利用TRMM卫星和Cloudsat卫星对不同类型云系的中微尺度结构的研究分析[D].南京:南京信息工程大学,2008.[ZHAO Shuhui. A study on the mesoscale and microscale structures in different types of clouds by TRMM satellite and CloudSat satellite[D]. Nanjing:Nanjing University of Information Science&Technology,2008.]
    [25]陈勇航,邓军英,张萍,等.中天山附近强降雨过程中云冰水含量随高度变化特征[J].资源科学,2013,35(3):655-664.[CHEN Yonghang,DENG Junying,ZHANG Ping,et al. Vertical distribution of ice water content in clouds during heavy rains around Tianshan Mountain[J]. Resources Science,2013,35(3):655-664.]
    [26]邓军英,丁明月,王文彩,等.冰云粒子微物理属性在一次强降雨过程中的垂直分布[J].干旱区地理,2016,39(3):590-599.[DENG Junying,DING Mingyue,WANG Wencai,et al. Vertical distributions microphysical properties of ice particles in a heavy rain[J]. Arid Land Geography,2016,39(1):590-599.]
    [27]王蕾,黄慰军,黄镇,等.新疆两次暴雪过程云系的MODIS三光谱特征分析[J].气象科学,2011,31(1):107-112.[WANG Lei,HUANG Weijun,Huang Zhen,et al. Cloud tri-spectral analysis of two snowstorms in Xinjiang Region using MODIS data[J]. Journal of the Meteorological Sciences,2011,31(1):107-112.]
    [28]李光伟.基于CPR和MODIS探测结果的云顶温度和云顶高度反演研究[D].合肥:中国科学技术大学,2010.[LI Guangwei.Cloud top temperature and cloud top height inversion based on CPR and MODIS detection results[D]. Hefei:University of Science and Technology of China. 2010.]
    [29]尹金方,王东海,许焕斌,等.冰核对云物理属性和降水影响的研究[J].地球科学进展,2015,30(3):323-333.[YIN Jinfang,WANG Donghai,XU Huangbin,et al. A study of the effects of ice nuclei on cloud microphysical properties and precipitation[J].Advances in Earth Science,2015,30(3):323-333.]
    [30]傅云飞,冯静夷,朱红芳,等.西太平洋副热带高压下热对流降水结构特征的个例分析[J].气象学报,2005,63(5):750-761.[FU Yunfei,FENG Jingyi,ZHU Hongfang,et al. Structures of a thermal convective precipitation system happened in controlling of the Western Subtropical Pacific High[J]. Acta Meteorologica Sinica,2005,63(5):750-761.]
    [31]杨军,陈宝君,银燕.云降水物理学[M].北京:气象出版社,2011:187-243.[YANG Jun,CHEN Baojun,YIN Yan. Physics of cloud and precipitation[M]. Beijing:China Meteorological Press,2011:187-243.]
    [32]杨大生,王普才.中国地区夏季云粒子尺寸的时空分布特征[J].气候与环境研究,2012,17(4):433-443.[YANG Dasheng,WANG Pucai. Tempo-spatial distribution characteristics of cloud particle size over China during summer[J]. Climatic and Environmental Research,2012,17(4):433-443.]
    [33]马占山,刘奇俊,秦琰琰,等.云探测卫星CloudSat[J].气象,2008,34(8):104-111.[MA Zhanshan,LIU Qijun,QI Yanyan.Introductions to a new type cloud detecting satellite:CloudSat[J].Meteorological Monthly,2008,34(8):104-111.]