夹芯强度对新型液舱防护效能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of core strength on protection efficiency for new safety liquid cabin
  • 作者:李营 ; 张磊 ; 杜志鹏 ; 赵鹏铎 ; 周心桃 ; 方岱宁
  • 英文作者:LI Ying;ZHANG Lei;DU Zhi-peng;ZHAO Peng-duo;ZHOU Xin-tao;FANG Dai-ning;Institute of Advanced Structure Technology,Beijing Institute of Technology;Naval Research Academy;China Ship Development and Design Center;
  • 关键词:防护液舱 ; 水锤效应 ; 滞后流 ; 夹层板 ; 防雷舱 ; 高速弹体
  • 英文关键词:safety liquid cabin;;hydrodynamic ram;;the after flow;;sandwich plates;;cabin near the shipboard;;high speed projectile
  • 中文刊名:CBLX
  • 英文刊名:Journal of Ship Mechanics
  • 机构:北京理工大学先进结构技术研究院;海军研究院;中国舰船设计研究中心;
  • 出版日期:2019-01-15
  • 出版单位:船舶力学
  • 年:2019
  • 期:v.23;No.183
  • 基金:国家自然科学基金(11802030;11802031);; 国防基础研究基金(B1420133057)
  • 语种:中文;
  • 页:CBLX201901007
  • 页数:10
  • CN:01
  • ISSN:32-1468/U
  • 分类号:60-69
摘要
舰船防护液舱在高速弹体作用下会发生大变形,防护难度较大。文章对新型防护液舱结构进行了分析,建立了含方格夹层板的液舱结构模型,通过与实验数据对比验证了数值计算方法的有效性,并对不同弹体速度、不同芯层强度下的夹层板防护效能进行了比较,并进行了机理分析。研究结果表明:(1)适当降低芯层强度能降低液舱前后板测点的压力载荷和比冲量,明显降低液舱前板的塑性变形;(2)芯层强度降低提高防护效能的主要机理是减小了液舱中的超空泡滞后流;(3)液舱新型防护夹层设计应考虑具体侵彻弹体载荷,适当降低芯层强度的同时应避免防护夹层前后壁发生贴合碰撞。研究结论为新一代航母防护液舱设计提供了参考。
        It is really hard to protect liquid cabin plates under high speed projectile penetration. New sandwich plates of safety liquid cabin were studied and speculated, and number model was set up to investigate new sandwich plates protection efficiency. Comparing super-cavitation and projectile velocity, validity of number simulation was gained. After that, some cases of different projectile velocity and core plates thickness were carried out. The results show that:(1) There is obvious decrease in impulse and deformation for front plates when core plate thickness reduced;(2) The main mechanism for the new sandwich plates deformation of different core strength is the after flow;(3) The projectile loading should be considered designing the new sandwich plates to avoid crash of plates. The conclusions provide a reference for the design of the new generation aircraft carrier safety liquid cabin.
引文
[1]李营.反舰导弹舱内爆炸作用下舱室结构毁伤与防护机理[D].武汉:武汉理工大学,2017.
    [2]Varas D,López-Puente J,Zaera R.Experimental analysis of fluid-filled aluminum tubes subjected to high-velocity impact[J].International Journal of Impact Engineering,2009,36(1):81-91.
    [3]Varas D,Zaera R,López-Puente J.Numerical modeling of the hydrodynamic ram phenomenon[J].International Journal of Impact Engineering,2009,36(3):363-374.
    [4]沈晓乐,朱锡,侯海量,等.高速破片侵彻防护液舱试验研究[J].中国舰船研究,2011,6(3):12-15.Shen Xiaole,Zhu Xi,Hou Hailiang,et al.Experimental study on penetration properties of high velocity fragment into safety liquid cabin[J].Chinese Journal of Ship Research,2011,6(3):12-15.
    [5]唐廷,朱锡,侯海量,等.高速破片在防雷舱结构中引起的冲击荷载的理论研究[J].振动与冲击,2013,6(3):12-15.Tang Ting,Zhu Xi,Hou Hailiang,et al.Shock loading induced by high speed fragment in cabin near shipboard[J].Journal of Vibration and Shock,2013,6(3):12-15.
    [6]李典,朱锡,侯海量,等.高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J].爆炸与冲击,2016,36(1):1-8.Li Dian,Zhu Xi,Hou Hailiang,et al.Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration[J].Explosion and Shock Waves,2016,36(1):1-8.
    [7]徐双喜,吴卫国,李晓彬,等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击,2010,30(4):395-400.Xu Shuangxi,Wu Weiguo,Li Xiaobin,et al.Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments[J].Explosion and Shock Waves,2010,30(4):395-400.
    [8]Zhang A,Ming F,Cao X,et al.Protective design of a warship broadside liquid cabin[J].J Marine Sci.Appl,2011,10:437-446.
    [9]李营,吴卫国,郑元洲,等.舰船防护液舱吸收爆炸破片的机理[J].中国造船,2015,56(2):38-44.Li Ying,Wu Weiguo,Zheng Yuanzhou,et al.Study on mechanism of explosive fragments absorbed by vessel protective tank[J].Shipbuilding of China,2015,56(2):38-44.
    [10]李营,张磊,朱海清,等.爆炸破片在液舱中的速度衰减特性研究[J].中国造船,2016,57(1):127-137.Li Ying,Zhang Lei,Zhu Haiqing,et al.Velocity attenuation of blast fragments in water tank[J].Shipbuilding of China,2016,57(1):127-137.
    [11]李营,张玮,杜志鹏,等.球形弹体打击作用下宽距水间隔铝板的动态响应特性[J].振动与冲击,2018,37(1):110-113.Li Ying,Zhang Wei,Du Zhipeng,et al.Dynamic response of wide interval water-spacing aluminum plates under sphere projectile impact[J].Journal of Vibration and Shock,2018,37(1):110-113.
    [12]李营.液舱防爆炸破片侵彻作用机理研究[D].武汉:武汉理工大学,2014.
    [13]Townsend D,Park N,M.Devall P.Failure of fluid filled structure due to high velocity fragment impact[J].International Journal of Impact Engineering,2003,29:723-733.
    [14]张志波,李春军,李红勇,等.气泡帷幕在水下爆破减震工程中的应用[J].爆破,2003,20(2):75-76.Zhang Zhibo,Li Chunjun,Li Hongyong,et al.Application of air bubble purdah in damping measure in underwater blasting[J].Blasting,2003,20(2):75-76.
    [15]吴国民,周心桃,段宏,等.美国航空母舰防护结构设计探析[J].中国舰船研究,2011,6(5):1-6.Wu Guomin,Zhou Xintao,Duan Hong,et al.Analysis on design of U.S.aircraft carrier protection structures[J].Chinese Journal of Ship Research,2011,6(5):1-6.
    [16]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperature[C]//Proceedings of the Seventh International Symposium on Ballistics.Netherland,1983.
    [17]Johnson G R,Cook W H.Fracture characteristics of three metals subjected to various strains,strain rates,temperatures and pressures[J].Engineering Fracture Mechanics,1985,21:31-48.
    [18]郭子涛.弹体入水特性及不同介质中金属靶抗侵彻性能研究[D].哈尔滨:哈尔滨工业大学,2012.Guo Zitao.Research on characteristic of projectile water entry and ballistic resistance of targets under different mediums[D].Harbin:Harbin Institute of Technology,2012.
    [19]Cole R H.Underwater explosions[M].Princeton:Princeton University Press,1948.