羰基铁粉的电磁波吸收性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electromagnetic Wave Absorption Property of Carbonyl Iron Powder
  • 作者:林媛
  • 英文作者:Lin Yuan;
  • 关键词:羰基铁粉 ; 吸波涂料 ; 质量分数 ; 电磁波吸收 ; 有效吸收频宽
  • 英文关键词:carbonyl iron powder;;absorbing coating;;mass fraction;;electromagnetic wave absorption;;effective absorption bandwidth
  • 中文刊名:AQDC
  • 英文刊名:Safety & EMC
  • 机构:闽江师范高等专科学校化学与生物工程系;
  • 出版日期:2019-06-25
  • 出版单位:安全与电磁兼容
  • 年:2019
  • 期:No.158
  • 基金:2018年度福建省中青年教师教育科研项目(JZ180630);; 闽江师范高等专科学校2018年校级课题(MKBZ201803)
  • 语种:中文;
  • 页:AQDC201903018
  • 页数:5
  • CN:03
  • ISSN:11-3452/TM
  • 分类号:51-54+93
摘要
羰基铁粉作为常见的电磁波吸收涂料,其形貌和含量对电磁波吸收性能有极大影响。为掌握羰基铁粉吸波涂料的介电常数、磁导率等参数随频率的变化规律,制备并测试了不同配比的微米级片状羰基铁粉同轴环样品。测试结果表明:羰基铁粉的最佳质量分数为60%~80%,样品厚度为2 mm、2.5 mm时,反射损耗-10 dB以下的有效吸收频宽分别为7.36 GHz、2.4 GHz,最大反射损耗值分别为-19.612 dB、-27.707 dB。样品厚度增加,最大吸收频率移向低频端。
        As a common electromagnetic wave absorbing coating, carbonyl iron powder has a great influence on the electromagnetic wave absorbing property. In order to master the variation law of dielectric constant, magnetic permeability and other parameters of carbonyl iron powder absorption coating with frequency, the micron flake carbonyl iron powder coaxial ring samples with different proportions were prepared and tested. Electromagnetic wave absorption test results show that the optimal mass fraction of carbonyl iron powder is 60% ~80%. When the sample thickness is 2 mm and 2.5 mm, the effective absorption bandwidth of reflection loss below-10 dB is 7.36 GHz and 2.4 GHz, and the maximum reflection loss value is-19.612 dB and-27.707 dB, respectively. As the sample thickness increases, the maximum absorption frequency shifts to the lower frequency end.
引文
[1]Chandrasekaran S, Ramanathan S, Basak T. Microwave Material Processing—A Review[J]. AIChE Journal, 2012,58(2):330-363.
    [2]Chen Xuegang, Ye Ying, Cheng Jipeng. Recent Progress in Electromagnetic Wave Absorbers[J]. Journal of Inorganic Materials, 2011, 26(5):449-457.
    [3]Kong L B, Li Z W, Liu L, et al. Recent progress in some composite materials and structures for specific electromagnetic applications[J].International Materials Reviews, 2013, 58(4):203-259.
    [4]Ren Fujie, Yu Haojie, Wang Li, et al. Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption[J]. RSC Advances, 2014,4(28):14419-14431.
    [5]Yuan Kaiping, Che Renchao, Cao Qi, et al. Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of CoreShell Magnetic Mesoporous Carbon Microspheres[J]. ACS Applied Materials&Interfaces, 2015, 7(9):5312-5319.
    [6]Lv Yinyun, Wang Yiting, Li Hongli, et al. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties[J]. ACS Applied Materials&Interfaces, 2015, 7(24):13604-13611.
    [7]Lin Yuan, Xu Lu, Jiang Zhiyuan, et al. Facile synthesis of(Ni,Co)@(Ni,Co)xFe3-xO4 core@shell chain structures and(Ni,Co)@(Ni,Co)xFe3-xO4/graphene composites with enhanced microwave absorption[J]. RSC Advances, 2015, 5(87):70849-70855.
    [8]Nicolson A M, Ross G F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2007,19(4):377-382.
    [9]Duan Yuping, Zhang Yahong, Wang Tongmin, et al. Evolution study of microstructure and electromagnetic behaviors of FeCo-Ni alloy with mechanical alloying[J]. Materials Science&Engineering B, 2014, 185(7):86-93.
    [10]Gu Xin, Zhu Weimo, Jia Chunjiang, et al. Synthesis and microwave absorbing properties of highly ordered mesoporous crystalline NiFe2O4[J]. Chemical Communications, 2011,47:5337-5339.
    [11]Sun Xin, He Jianping, Li Guoxian, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4):765-777.