氢气浸泡辐照加速方法在3DG111器件上的应用及辐射损伤机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrogen soaking irradiation acceleration method: application to and damage mechanism analysis on 3DG111 transistors
  • 作者:赵金宇 ; 杨剑 ; 董磊 ; 李兴冀
  • 英文作者:Zhao Jin-Yu;Yang Jian-Qun;Dong Lei;Li Xing-Ji;Materials Science and Engineering, Harbin Institute of Technology;
  • 关键词:双极型晶体管 ; 氢气 ; 电离辐射 ; 低剂量率辐射损伤增强效应
  • 英文关键词:bipolar junction transistor;;hydrogen;;ionizing damage;;enhanced low dose rate sensitivity
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:哈尔滨工业大学材料科学与工程学院;
  • 出版日期:2019-03-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:科学挑战专题(批准号:TZ2018004);; 模拟集成电路重点实验室基金(批准号:6142802WD201803)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906029
  • 页数:7
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:231-237
摘要
本文以~(60)Co为辐照源,针对3DG111型晶体管,利用半导体参数分析仪和深能级缺陷瞬态谱仪,研究高/低剂量率和有/无氢气浸泡条件下,电性能和深能级缺陷的演化规律.试验结果表明,与高剂量率辐照相比,低剂量率辐照条件下,3DG111型晶体管的电流增益退化更加严重,这说明该器件出现了明显的低剂量率增强效应;无论是高剂量率还是低剂量率辐照条件下,3DG111晶体管的辐射损伤缺陷均是氧化物正电荷和界面态陷阱,并且低剂量率条件下,缺陷能级较深;氢气浸泡后在高剂量率辐照条件下,与未进行氢气处理的器件相比,辐射损伤程度明显加剧,且与低剂量率辐照条件下器件的损伤程度相同,缺陷数量、种类及能级也相同.因此,氢气浸泡处理可以作为低剂量率辐射损伤增强效应加速评估方法的有效手段.
        Bipolar devices are extremely sensitive to ionization effects, and their low dose rate radiation damage is more serious than their high dose rate radiation damage, which phenomenon is especially named enhanced low dose rate sensitivity. In the actual space radiation environment, the radiation dose rate of the device is extremely low. Currently, the enhanced low dose rate sensitivity effect has become a key factor of evaluating the reliability of spacecraft and its electronic systems, due to the fact that the low dose rate irradiation test needs longer time. The method to speed up the test on the ground is one of the hottest topics in this research area. In recent years, some researches have suggested that the use of hydrogen immersion irradiation for accelerating the test can simulate low dose rate radiation damage to some extent, but the damage mechanism has not been analyzed in detail. In this paper, the mechanisms of electrical properties and deep level defects for the 3 DG111 transistor by ~(60)Co gamma ray under high and low dose rates in the cases with and without hydrogen are investigated. In order to analyze the damage mechanism of bipolar junction transistor, the excess base current and deep level transient spectrum are measured by using semiconductor parameter analyzer and deep level transient spectroscopy. The experimental results show that the current gain degradation of 3 DG111 transistor is more serious under low dose rate radiation than under high dose rate radiation, at the same time,the excess base current of transistor increases significantly. This shows that in the device there appears the enhanced low dose rate sensitivity. Under both high dose rate radiation and low dose rate irradiation, the radiation damage defects are the traps for both oxide positive charge and interface state. Under the low dose rate irradiation, there are two main reasons for the increase in transistor damage. First, the oxide charge concentration increases under low dose rate irradiation, and the oxide charge and interface state energy levels move toward the middle band. Eventually, the space charge region recombination of the transistor is intensified,and thus causing the excessive base current of the transistor to increase and transistor performance to degrade.The comparison shows that the number and type of defects under the high dose rate irradiation are the same as those under the low dose rate irradiation. Based on the analysis, the hydrogen treatment can be used as an effective method of accelerating the assessment of radiation damage enhancement effect at low dose rates.
引文
[1] Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014Chin. Phys. B 23 088505
    [2] Enlow E W, Pease R L, Combs W 1991 IEEE Trans. Nucl.Sci. 38 1342
    [3] Zhai Y H, Li P, Zhang G J, Luo Y X, Fan X, Hu B, Li J H,Zhang J, Shu P 2011 Acta Phys. Sin. 20 088501(in Chinese)[翟亚红,李平,张国俊,罗玉香,范雪,胡滨,李俊宏,张健,束平2011物理学报20 088501]
    [4] Wang Y Y, Lu W, Ren D Y, Guo Q, Yu X F, He C F, G B2011 Acta Phys.Sin. 60 096104(in Chinese)[王义元,陆妩,任迪远,郭旗,余学峰,何承发,高博2011物理学报60 096104]
    [5] Jiang K, Lu W, Hu T L, Wang X, Guo Q, He C F, Liu M H,Li X L 2015 Acta Phys.Sin. 64 136103(in Chinese)[姜柯,陆妩,胡天乐,王信,郭旗,何承发,刘默涵,李小龙2015物理学报64 136103]
    [6] Bi J S, Han Z S, Zhang X E, McCurdy M W, Reed R A,Schrimpf R D, Fleetwood D M, Alles M L, Weller R A,Linten D, Jurczak M, Fantini A 2013 IEEE Trans. Nucl. Sci.60 4540
    [7] Turflinger T L, Campbell, A B, Schmeichel W M, Walters R J, Krieg J E, Titus J L, Reeves M, Marshall P W, Pease R L2003 IEEE Trans. Nucl. Sci. 50 2328
    [8] Harris R D, Mcclure S S, Rax B G, Evans, R W, Jun I 2008IEEE Trans. Nucl. Sci. 55 3088
    [9] Liu M B, Chen W, Yao Z B, Huang S Y, He B P, Sheng J K,Xiao Z G, Wang Z J 2014 High Power Laser and Particle Beams 26 214(in Chinese)[刘敏波,陈伟,姚志斌,黄绍艳,何宝平,盛江坤,肖志刚,王祖军2014强激光与粒子束26 214]
    [10] Ma Y W, Lu W, Guo Q, Wu X, Sun J, Deng W, Wang X,Wu Z X 2014 Atomic Energy Science and Technology 48 2170(in Chinese)[马武英,陆妩,郭旗,吴雪,孙静,邓伟,王信,吴正新2014原子能科学技术48 2170]
    [11] Lu W, Ren D Y, Zheng Y Z, Wang Y Y, Guo Q, Yu X F2009 Atomic Energy Science and Technology 43 769(in Chinese)[陆妩,任迪远,郑玉展,王义元,郭旗,余学峰2009原子能科学技术43 769]
    [12] Wang X M, Liu C X, Sidike A 2007 Nuclear Electronics and Detection Technology 27 1139(in Chinese)[王先明,刘楚湘,艾尔肯·斯迪克2007核电子学与探测技术27 1139]
    [13] Li X L, Lu W, Wang X, Yu X, Guo Q, Sun J, Liu M H, Yao S, Wei X Y, He C F 2018 Chin. Phys. B 27 036102
    [14] Li X L, Lu W, Wang X, Guo Q, He C F, Sun J, Yu X, Liu M H, Jia J C, Yao S, Wei X Y 2018 Acta Phys. Sin. 67 096101(in Chinese)[李小龙,陆妩,王信,郭旗,何承发,孙静,于新,刘默寒,贾金成,姚帅,魏昕宇2018物理学报67 096101]
    [15] Liu F Y 2015 M. S. Thesis(Harbin:Harbin Institute of Technology)(in Chinese)[刘方圆2015硕士学位论文(哈尔滨:哈尔滨工业大学)]
    [16] Li X J, Chen C J, Yang J Q, Liu C M, Ma G L 2017 J.Terahertz Sci. Electron. Inform. Technol.15 690(in Chinese)[李兴冀,陈朝基,杨剑群,刘超铭,马国亮2017太赫兹科学与电子信息学报15 690]
    [17] Luan X N 2016 M. S. Thesis(Harbin:Harbin Institute of Technology)(in Chinese)[栾晓楠2016硕士学位论文(哈尔滨:哈尔滨工业大学)]
    [18] Kosier S L, Schrimpf R D, Nowlin R N, Fleetwood D M,DeLaus M, Pease R L, Combs W E, Wei A 1993 IEEE Trans. Nucl. Sci. 40 1276
    [19] Zheng Y Z, Lu W, Ren D Y,Wang Y Y,Guo Q,Yu X F,He C F 2009 Acta Phys. Sin. 58 5560(in Chinese)[郑玉展,陆妩,任迪远,王义元,郭旗,余学锋,何承发2009物理学报58 5560]
    [20] Ma W Y, Wang Z K, Lu W, Xi S B, Guo Q, He C F, Wang X, Liu M H, Jiang K 2014 Acta Phys. Sin. 63 116101(in Chinese)[马武英,王志宽,陆妩,席善斌,郭旗,何承发,王信,刘默寒,姜柯2014物理学报63 116101]
    [21] Liu C M, Li X J, Yang J Q, Bollmann J 2014 Nucl. Instrum.Meth. Phys. Res., Sect. A 735 462
    [22] Rashkeev S N, Fleetwood D M, Schrimpf R D, Pantelides S T2004 IEEE Trans. Nucl. Sci. 51 3158
    [23] Chen X J, Barnaby H J, Adell P, Pease R L, Vermeire B,Holbert K E 2009 IEEE Trans. Nucl. Sci. 56 3196
    [24] Fleetwood D M, Schrimpf R D, Pantelides S T, Pease R L,Dunham G W 2008 IEEE Trans. Nucl. Sci. 55 2986
    [25] Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys.Sin.66 246801(in Chinese)[姜平国,汪正兵,闫永播,刘文杰2017物理学报66 246801]
    [26] Mukhopadhyay S, Sushko P V, Stoneham A M, Shluger A L2004 Phys. Rev. B 70 195203
    [27] Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D,Pantelides S T 2002 Phys. Rev. Lett. 89 285505
    [28] Pease R L, Adell P C, Rax B G, Chen X J, Barnaby J H,Holbert K E 2008 IEEE Trans. Nucl. Sci. 55 3169