基于喷墨打印的In_2O_3/IGZO TFT的电学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrical Properties of In_2O_3/IGZO TFTs Prepared by Inkjet Printing
  • 作者:梁坤 ; 邵霜霜 ; 罗慢慢 ; 谢建军 ; 赵建文 ; 崔铮
  • 英文作者:Liang Kun;Shao Shuangshuang;Luo Manman;Xie Jianjun;Zhao Jianwen;Cui Zheng;School of Materials Science and Engineering, Shanghai University;Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences;
  • 关键词:非晶铟镓锌氧化物(IGZO) ; 喷墨打印 ; In_2O_3 ; 异质结沟道层 ; 薄膜晶体管(TFT)
  • 英文关键词:amorphous indium gallium zinc oxide(IGZO);;inkjet printing;;In_2O_3;;heterojunction channel layer;;thin film transistor(TFT)
  • 中文刊名:BDTJ
  • 英文刊名:Semiconductor Technology
  • 机构:上海大学材料科学与工程学院;中国科学院苏州纳米技术与纳米仿生研究所印刷电子研究中心;
  • 出版日期:2019-05-03
  • 出版单位:半导体技术
  • 年:2019
  • 期:v.44;No.369
  • 基金:国家重点研发计划资助项目(2016YFB0401100)
  • 语种:中文;
  • 页:BDTJ201905006
  • 页数:7
  • CN:05
  • ISSN:13-1109/TN
  • 分类号:37-43
摘要
利用喷墨打印技术制备了非晶铟镓锌氧化物(IGZO)薄膜、铟氧化物(In_2O_3)薄膜和性能明显改善的双层In_2O_3/IGZO异质结沟道薄膜,研究了薄膜的物理与电学特性。结果表明,喷墨打印制备的金属氧化物薄膜具有较高的光学透过率与较低的表面粗糙度;嵌入的In_2O_3层薄膜能减小IGZO与In_2O_3间的界面缺陷,明显提高In_2O_3/IGZO薄膜晶体管(TFT)的性能及其偏压稳定性。随着IGZO中In含量的增加,载流子浓度升高,器件的迁移率增大,但In_2O_3与IGZO间能级势垒会逐渐降低,最后导致难以控制关态电流和阈值电压,因此,适当调整In的比例有利于获得较高器件性能的In_2O_3/IGZO异质结沟道TFT。
        Amorphous indium gallium zinc oxide(IGZO) films, indium oxide(In_2O_3) films and double-layer In_2O_3/IGZO heterojunction channel films with improved performance were successfully fabricated by inkjet printing technology, and the physical and electrical properties of these films were investigated. The results show that the metal oxide films prepared by inkjet printing have high optical transmittance and low surface roughness; and the embedded In_2O_3 layer films can reduce the interface defects between IGZO and In_2O_3 and significantly improve the performance and bias stability of In_2O_3/IGZO thin film transistors(TFTs). As the In content in IGZO thin films increases, the carrier concentration increases, and device mobility increases, but the energy barrier between In_2O_3 and IGZO decreases, which ultimately makes it difficult to control off-state current and threshold voltage. Therefore, tuning the In contents in metal oxide thin films is beneficial to obtain higher device performance of In_2O_3/IGZO heterojunction channel TFTs.
引文
[1] NOMURA K,OHTA H,UEDA K,et al.Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J].Science,2003,300(5623):1269-1272.
    [2] OHTOMO A,HWANG H Y.A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J].Nature,2004,427(6973):423-426.
    [3] HIRAO T,FURUTA M,HIRAMATSU T,et al.Bottom-gate zinc oxide thin-film transistors for AMLCDs [J].IEEE Transactions on Electron Devices,2008,55:3136-3142.
    [4] KIM Y H,HEO J S,KIM T H,et al.Flexible metal-oxide devices made by room temperature photochemical activation of sol-gel films [J].Nature,2012,489(7414):128-132.
    [5] KAMIYA T,HOSONO H.Material characteristics and applications of transparent amorphous oxide semicon ductors [J].NPG Asia Materials,2010,2(1):15-22.
    [6] SONG K,NOH J,JUN T,et al.Fully flexible solution-deposited ZnO thin-film transistors [J].Advanced Materials,2010,22 (38):4308-4312.
    [7] KIM M G,KANATZIDIS M G,FACCHETTI A,et al.Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing [J].Nature Materials,2011,10(5):382-388.
    [8] LIM K H,LEE J,HUH J E,et al.A systematic study on effects of precursors and solvents for optimization of solution-processed oxide semiconductor thin-film transistors [J].Journal of Materials Chemistry:C,2017,5(31):7768-7776.
    [9] XIE M L,WU S J,CHEN Z,et al.Performance improvement for printed indium gallium zinc oxide thin-film transistors with a preheating process [J].RSC Advances,2016,6(47):41439-41446.
    [10] KAMIYA T,NOMURA K,HOSONO H.Present status of amorphous In-Ga-Zn-O thin-film transistors [J].Science and Technology of Advanced Materials,2010,11(4):44305-41312.
    [11] WU S,ZHANG Q,CHEN Z,et al.Inkjet printing of oxide thin film transistor arrays with small spacing with polymer-doped metal nitrate aqueous ink [J].Journal of Materials Chemistry:C,2017,5(30):7495-7503.
    [12] LI Y Z,LAN L F,SUN S,et al.All inkjet-printed me-tal-oxide thin-film transistor array with good stability and uniformity using surface-energy patterns [J].ACS Applied Materials and Interfaces,2017,9(9):8194-8200.
    [13] CUI Z,ZHOU C S,QIU S,et al.Printed electronics:materials,technologies and applications [M].New Jersey:Wiley,2016:1-435.
    [14] KRAUSMANN J,SANCTIS S,ENGSTLER J,et al.Charge transport in low-temperature processed thin-film transistors based on indium oxide/zinc oxide heterostructures [J].ACS Applied Materials and Interfaces,2018,10(24):20661-20671.
    [15] NAM S,YANG J H,CHO S H,et al.Solution-processed indium-free ZnO/SnO2 bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities [J].Journal of Materials Chemistry:C,2016,4(47):11298-11304.
    [16] KIM J,JI K H,JUNG H Y,et al.Improvement in both mobility and bias stability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gate insulator/channel interface [J].Applied Physics Letters,2011,99(12):122102-1-122102-3.
    [17] KIM K M,JEONG W H,KIM D L,et al.Low-temperature solution processing of AlInZnO/InZnO dual-channel thin-film transistors [J].IEEE Electron Device Letters,2011,32(9):1242-1244.
    [18] RIM Y S,CHEN H,KOU X,et al.Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways [J].Advanced Materials,2014,26(25):4273-4278.
    [19] NOMURA K,OHTA H,TAKAGI A,et al.Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J].Nature,2004,432(7016):488-492.
    [20] PARK J S,MAENG W J,KIM H S.Review of recent developments in amorphous oxide semiconductor thin-film transistor devices [J].Thin Solid Films,2012,520(6):1679-1693.
    [21] ABLIZ A,HUANG W,WANG J,et al.Rational design of ZnO∶H/ZnO bilayer structure for high performance thin-film transistors [J].ACS Applied Materials and Interfaces,2016,8(12):7862-7868.
    [22] AHN B D,JEON H J,PARK J S.Effects of GaN addition on the electrical performance of zinc tin oxide thin film transistor by solution-processing [J].ACS Applied Materials and Interfaces,2014,6(12):9228-9235.
    [23] KAMIYA T,NOMURA K,HOSONO H.Origins of high mobility and low operation voltage of amorphous oxide TFTs:electronic structure,electron transport,defects and doping [J].Journal of Display Technology,2009,5(12):468-483.
    [24] KHIM D,LIN Y H,NAM S,et al.Modulation-doped In2O3/ZnO heterojunction transistors processed from solution [J].Advanced Materials,2017,29(19):1605837-1-1605837-24.
    [25] FORTUNATO E,BARQUINHA P,MARTINS R.Oxide semiconductor thin-film transistors:a review of recent advances [J].Advanced Materials,2012,24(22):2945-2986.
    [26] ABLIZ A,WANG J L,XU L,et al.Boost up the electrical performance of InGaZnO thin film transistors by inserting an ultrathin InGaZnO∶H layer [J].Applied Physics Letters,2016,108(21):213501-1-213501-5.
    [27] JEONG S,HA Y G,MOON J,et al.Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors [J].Advanced Materials,2010,22(12):1346-1350.
    [28] YU X,ZHOU N,SMITH J,et al.A.Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture [J].ACS Applied Materials and Interfaces,2013,5(16):7983-7988.
    [29] LIU G X,LIU A,SHAN F K,et al.High-performance fully amorphous bilayer metal-oxide thin film transistors using ultrathin solution-processed ZrOx dielectric [J].Applied Physics Letters,2014,105(11):113-120.