PSF-TEPA膜基固态胺制备及CO_2吸附性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and CO_2 adsorption performance of PSF-TEPA membrane-based solid amine
  • 作者:张烨 ; 宋健 ; 谭小耀
  • 英文作者:ZHANG Ye;SONG Jian;TAN Xiao-yao;State Key Laboratory of Separation Membranes and Membrane Processes,Tianjin Polytechnic University;
  • 关键词:固态胺 ; PSF中空纤维膜 ; 四乙烯五胺 ; CO_2吸附
  • 英文关键词:solid amine;;PSF hollow fiber membrane;;tetraethylenepentamine;;CO_2 adsorption
  • 中文刊名:IMIY
  • 英文刊名:Chemical Engineering(China)
  • 机构:天津工业大学分离膜与膜过程省部共建国家重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:化学工程
  • 年:2019
  • 期:v.47;No.364
  • 基金:国家自然科学基金青年基金项目(21805206)
  • 语种:中文;
  • 页:IMIY201906006
  • 页数:6
  • CN:06
  • ISSN:61-1136/TQ
  • 分类号:32-36+83
摘要
在空间站和载人深潜器等长期密闭空间中,CO_2体积分数的增加严重影响室内人员的身体健康。文中研究采用浸润的方法将四乙烯五胺(TEPA)负载在非对称结构聚砜(PSF)中空纤维膜的指状孔道内制得PSF-TEPA中空纤维膜基固态胺,系统考察其在模拟人类工作环境下吸附低体积分数CO_2的性能。结果表明:PSF-TEPA膜基固态胺中TEPA的最佳负载量为47. 11%,此时CO_2穿透吸附容量与饱和吸附容量分别达到56. 58 mg/g和85. 10 mg/g(20℃),二者比值高达66. 49%;在5—50℃范围内,固态胺吸附性能随温度和体积分数的升高而增大,温度为50℃、CO_2体积分数为0. 55%时,饱和吸附量达到102. 13 mg/g;经6次循环再生,PSF-TEPA饱和吸附量略有降低,但趋于稳定。PSF-TEPA膜基固态胺对CO_2优良的吸附效果和稳定的再生性能,使其在低体积分数CO_2脱除方面有较大的应用前景。
        The increment of CO_2 volume fraction seriously affects the health of personnel in long-term confined spaces such as space stations and manned submersibles. In this study,the tetraethylenepentamine-polysulfone( PSF-TEPA) hollow fiber membrane-based solid amine was prepared by infiltrating TEPA in the finger-shaped pores of the asymmetric structured PSF hollow fiber membrane. The low-volume fraction CO_2 adsorption performance of prepared solid amine in simulated human working environments was investigated systematically. The results show that the optimal loading of TEPA in PSF-TEPA membrane-based solid amine is 47. 11%,while the CO_2 breakthrough adsorption capacity and the saturated adsorption capacity( 20 ℃) reach 56. 58 mg/g and 85. 10 mg/g,respectively,with a ratio as high as 66. 49%. At 5-50 ℃,the adsorption performance of solid amine increases with the increment of temperature and CO_2 volume fraction. The saturated adsorption amount reaches102. 13 mg/g,when the temperature is 50 ℃ and the volume fraction of CO_2 is 0. 55%,which decrease slightly after 6 cycles of regeneration,and tend to be stable. The excellent CO_2 adsorption performance and stable regeneration property endow PSF-TEPA membrane-based solid amine with great application prospects in the removal of low volume fraction CO_2.
引文
[1]RICE S A.Human health risk assessment of CO2:Survivors of acute high-level exposure and populations sensitive to prolonged low-level exposure[J].Environments,2014,3(5):7-15.
    [2]FLORINl N,HARRIS A T.Reactivity of CaO derived from nano-sized Ca CO3particles through multiple CO2,capture-and-release cycles[J].Chemical Engineering Science,2009,64(2):187-191.
    [3]PIMGRUBER G,JOLIMAITRE E,WOLFF L,et al.Purification method by hydrogen adsorbtion with cogeneration of CO2stream pressure:US,8192527[P].2012-06-05.
    [4]FRANCISCO G J,CHAKMA A,FENG X.Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol)matrix for CO2/N2,separation[J].Journal of Membrane Science,2007,303(1):54-63.
    [5]KHATR R A,CHUANG S S C,SOONG Y,et al.Thermal and chemical stability of regenerable solid amine sorbent for CO2capture[J].Energy&Fuels,2006,20(4):1514-1520.
    [6]MONAZAM E R,SHADLE L J,SIRIWARDANE R.Performance and kinetics of a solid amine sorbent for carbon dioxide removal[J].Industrial&Engineering Chemistry Research,2011,50(19):10989-10995.
    [7]SATYAPAL S,Filburn T,TRELA J,et al.Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications[J].Energy&Fuels,2001,15(2):250-255.
    [8]YE Qing,LING Jing,WANG Can,et al.Adsorption of low-concentration carbon dioxide on amine-modified at ambient temperature[J].Energy&Fuels,2012,26(4):2497-2504.
    [9]BELMABKHOUT Y,SERNA-GUERREROeR,SAYARIA.Adsorption of CO2-containing gas mixtures over aminebearing pore-expanded MCM-41 silica:Application for CO2separation[J].Adsorption,2011,17(2):395-401.
    [10]艾莹莹.低浓度二氧化碳高效吸附剂的研究[D].大连:大连理工大学,2010.
    [11]WANG Bo,SONG Jian,TAN X,et al.Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation[J].Journal of Membrane Science,2016,502:151-157.
    [12]SHI J J,LIU Y M,CHEN J,et al.Dynamic performance of CO2adsorption with amine-modified SBA-16[J].Acta Physico-Chimica Sinica,2010,26(11):3023-3029.
    [13]孔童童,王霞,郭庆杰.新型多级微/介孔固态胺吸附剂的制备及其CO2吸附性能研究[J].燃料化学学报,2015,43(12):1489-1497.
    [14]LEE Y M,KIM J H,KANG J S,et al.Annealing effects of dilute polyaniline/NMP solution[J].Macromolecules,2000,33(20):7431-7439.
    [15]WANG Cai,TAN L,YU J,et al.Synthesis of aminofunctionalized mesoporous alumina with enhanced affinity towards Cr(VI)and CO2[J].Chemical Engineering Journal,2014,239:207-215.
    [16]CHAIKITTISILP W,KIM H J.JONES C W.Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2from simulated flue gas and ambient air[J].Energy&Fuels,2011,25(11):5528-5537.
    [17]丁力.Si O2基固态胺吸附剂的制备及其二氧化碳吸附性能研究[D].杭州:浙江大学,2017:34-49.
    [18]吴会鹏.严寒地区学生宿舍室内空气品质实测与分析[D].哈尔滨:哈尔滨工业大学,2016:112-116.
    [19]赵文瑛.固态胺捕集二氧化碳的实验研究[D].北京:清华大学,2015:26-32.
    [20]胡惠蓉.表面改性碳纳米管吸附密闭空间低浓度CO2的研究[D].杭州:浙江大学,2013:87-95.